版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列條件不能確定一個平面的是()A.兩條相交直線 B.兩條平行直線 C.直線與直線外一點 D.共線的三點2.計算()A. B. C. D.3.在中,,,則的外接圓半徑為()A.1 B.2 C. D.4.數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+),那么a4的值為().A.4 B.8 C.15 D.315.已知,當取得最小值時()A. B. C. D.6.給出下列四個命題:①垂直于同一條直線的兩條直線互相平行;②平行于同一條直線的兩條直線平行;③若直線滿足,則;④若直線,是異面直線,則與,都相交的兩條直線是異面直線.其中假命題的個數(shù)是()A.1 B.2 C.3 D.47.在數(shù)列中,,,則的值為()A.4950 B.4951 C. D.8.在公比為2的等比數(shù)列中,,則等于()A.4 B.8 C.12 D.249.已知平面向量,,且,則等于()A. B. C. D.10.如圖所示,AB是半圓O的直徑,VA垂直于半圓O所在的平面,點C是圓周上不同于A,B的任意一點,M,N分別為VA,VC的中點,則下列結(jié)論正確的是()A.MN//AB B.平面VAC⊥平面VBCC.MN與BC所成的角為45° D.OC⊥平面VAC二、填空題:本大題共6小題,每小題5分,共30分。11.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.12.計算:________13.若直線平分圓,則的值為________.14.已知{}是等差數(shù)列,是它的前項和,且,則____.15.函數(shù),的值域是________.16.實數(shù)2和8的等比中項是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asinA=(2b-c)sinB+(2c-b)sinC..(1)求角A的大??;(2)若sinB+sinC=3,試判斷△ABC的形狀.18.已知是同一平面內(nèi)的三個向量,;(1)若,且,求的坐標;(2)若,且與垂直,求與的夾角.19.的內(nèi)角,,的對邊分別為,,,已知.(1)求角;(2)若,求面積的最大值.20.如圖,在平面直角坐標系xOy中,已知圓C:x2⑴若圓E的半徑為2,圓E與x軸相切且與圓C外切,求圓E的標準方程;⑵若過原點O的直線l與圓C相交于A,B兩點,且OA=AB,求直線l的方程.21.如圖,在直三棱柱中,,,,點N為AB中點,點M在邊AB上.(1)當點M為AB中點時,求證:平面;(2)試確定點M的位置,使得平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)確定平面的公理和推論逐一判斷即可得解.【詳解】解:對選項:經(jīng)過兩條相交直線有且只有一個平面,故錯誤.對選項:經(jīng)過兩條平行直線有且只有一個平面,故錯誤.對選項:經(jīng)過直線與直線外一點有且只有一個平面,故錯誤.對選項:過共線的三點,有無數(shù)個平面,故正確;故選:.【點睛】本題主要考查確定平面的公理及推論.解題的關鍵是要對確定平面的公理及推論理解透徹,屬于基礎題.2、A【解析】
根據(jù)對數(shù)運算,即可求得答案.【詳解】故選:A.【點睛】本題主要考查了對數(shù)運算,解題關鍵是掌握對數(shù)運算基礎知識,考查了計算能力,屬于基礎題.3、A【解析】
由同角三角函數(shù)關系式,先求得.再結(jié)合正弦定理即可求得的外接圓半徑.【詳解】中,由同角三角函數(shù)關系式可得由正弦定理可得所以,即的外接圓半徑為1故選:A【點睛】本題考查了同角三角函數(shù)關系式的應用,正弦定理求三角形外接圓半徑,屬于基礎題.4、C【解析】試題分析:,,,故選C.考點:數(shù)列的遞推公式5、D【解析】
可用導函數(shù)解決最小值問題,即可得到答案.【詳解】根據(jù)題意,令,則,而當時,,當時,,則在處取得極小值,故選D.【點睛】本題主要考查函數(shù)的最值問題,意在考查學生利用導數(shù)工具解決實際問題的能力,難度中等.6、B【解析】
利用空間直線的位置關系逐一分析判斷得解.【詳解】①為假命題.可舉反例,如a,b,c三條直線兩兩垂直;②平行于同一條直線的兩條直線平行,是真命題;③若直線滿足,則,是真命題;④是假命題,如圖甲所示,c,d與異面直線,交于四個點,此時c,d異面,一定不會平行;當點B在直線上運動(其余三點不動),會出現(xiàn)點A與點B重合的情形,如圖乙所示,此時c,d共面且相交.故答案為B【點睛】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.7、C【解析】
利用累加法求得,由此求得的表達式,進而求得的值.【詳解】依題意,所以,所以,當時,上式也滿足.所以.故選:C【點睛】本小題主要考查累加法求數(shù)列的通項公式,屬于基礎題.8、D【解析】
由等比數(shù)列的性質(zhì)可得,可求出,則答案可求解.【詳解】等比數(shù)列的公比為2,由,即,所以舍所以故選:D【點睛】本題考查等比數(shù)列的性質(zhì)和通項公式的應用,屬于基礎題.9、B【解析】
先由求出,然后按照向量的坐標運算法則算出答案即可【詳解】因為,,且所以,即,所以所以故選:B【點睛】若,則10、B【解析】
對每一個選項逐一分析判斷得解.【詳解】A.∵M,N分別為VA,VC的中點,∴MN//AC,又AC⊥BC,∴MN與BC所成的角為90°,故C不正確;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正確.B.∵AB是⊙O的直徑,點C是圓周上不同于A,B的任意一點,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC?⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC?平面VBC,∴平面VAC⊥平面VBC,故B正確;C.∵AB是⊙O的直徑,點C是圓周上不同于A,B的任意一點,∴AC⊥BC,又A、B、C、O共面,∴OC與AC不垂直,∴OC⊥平面VAC不成立,故B不正確;∵M,N分別為VA,VC的中點,∴MN//AC,又AC⊥BC,∴MN與BC所成的角為90°,故C不正確;D.∵AB是⊙O的直徑,點C是圓周上不同于A,B的任意一點,∴AC⊥BC,又A、B、C、O共面,∴OC與AC不垂直,∴OC⊥平面VAC不成立,故D不正確.故選B.【點睛】本題主要考查空間位置關系的證明,考查異面直線所成的角的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設,則,可得,然后利用基本不等式得到關于的一元二次方程解方程可得的最大值和最小值,進而得到結(jié)論.【詳解】∵x,y=R+,設,則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【點睛】本題考查了基本不等式的應用和一元二次不等式的解法,考查了轉(zhuǎn)化思想和運算推理能力,屬于中檔題.12、【解析】
用正弦、正切的誘導公式化簡求值即可.【詳解】.【點睛】本題考查了正弦、正切的誘導公式,考查了特殊角的正弦值和正切值.13、1【解析】
把圓的一般式方程化為標準方程得到圓心,根據(jù)直線過圓心,把圓心的坐標代入到直線的方程,得到關于的方程,解方程即可【詳解】圓的標準方程為,則圓心為直線過圓心解得故答案為【點睛】本題考查的是直線與圓的位置關系,解題的關鍵是求出圓心的坐標,屬于基礎題14、【解析】
根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【詳解】解:由題意可知,;同理。故.故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),屬于基礎題.15、【解析】
利用正切函數(shù)在單調(diào)遞增,求得的值域為.【詳解】因為函數(shù)在單調(diào)遞增,所以,,故函數(shù)的值域為.【點睛】本題考查利用函數(shù)的單調(diào)性求值域,注意定義域、值域要寫成區(qū)間的形式.16、【解析】所求的等比中項為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)60°【解析】
(1)利用余弦定理表示出cosA,然后根據(jù)正弦定理化簡已知的等式,整理后代入表示出的cosA中,化簡后求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)由A為60°,利用三角形的內(nèi)角和定理得到B+C的度數(shù),用B表示出C,代入已知的sinB+sinC=3中,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),由B的范圍,求出這個角的范圍,利用特殊角的三角函數(shù)值求出B為60°,可得出三角形ABC三個角相等,都為60°,則三角形ABC為等邊三角形.【詳解】(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cosA=b2+c(2)∵A+B+C=180°,∴B+C=180°-60°=120°,由sinB+sinC=3,得sinB+sin(120°-B)=3,∴sinB+sin120°cosB-cos120°sinB=3,∴32sinB+32cosB=3,即sin(∵0°<B<120°,∴30°<B+30°<150°,∴B+30°=90°,B=60°,∴A=B=C=60°,△ABC為等邊三角形.【點睛】此題考查了三角形形狀的判斷,正弦、余弦定理,兩角和與差的正弦函數(shù)公式,等邊三角形的判定,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵.18、(1)或;(2).【解析】
(1)設向量,根據(jù)和得到關于的方程組,從而得到答案;(2)根據(jù)與垂直,得到的值,根據(jù)向量夾角公式得到的值,從而得到的值.【詳解】(1)設向量,因為,,,所以,解得,或所以或;(2)因為與垂直,所以,所以而,,所以,得,與的夾角為,所以,因為,所以.【點睛】本題考查根據(jù)向量的平行求向量的坐標,根據(jù)向量的垂直關系求向量的夾角,屬于簡單題.19、(1);(2).【解析】
(1)由邊角互化整理后,即可求得角C;(2)由余弦定理,結(jié)合均值不等式,求解的最大值,代入面積即可.【詳解】(1)由正弦定理得,,,,因為,所以,所以,即,所以.(2)由余弦定理可得:即,所以,當且僅當時,取得最大值為.【點睛】本題考查解三角形中的邊角互化,以及利用余弦定理及均值不等式求三角形面積的最值問題,屬綜合中檔題.20、(1)(x+3)2+(y-2)2【解析】
(1)設出圓E的標準方程為(x-a)2+(y-b)2=r2,由圓E與x軸相切,可得b=r,由圓E與圓C外切,可得兩圓心距等于半徑之和,由此解出(2)法一:設出A點坐標為(x0,y0),根據(jù)OA=AB,可得到點B坐標,把A、B兩點坐標代入圓法二:設AB的中點為M,連結(jié)CM,CA,設出直線l的方程,由題求出CM的長,利用點到直線的距離即可得求出k值,從而得到直線l的方程【詳解】⑴設圓E的標準方程為(x-a)2+(y-b)2=r2因為圓E的半徑為2,與x軸相切,所以b=2因為圓E與圓C外切所以EC=3,即a由①②解得a=±3,b=2故圓E的標準方程為(x+3)2+⑵方法一;設A(因為OA=AB,所以A為OB的中點,從而B(2因為A,B都在圓C上所以x解得x0=-故直線l的方程為:y=±方法二:設AB的中點為M,連結(jié)CM,CA設AM=t,CM=d因為OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由題可知直線l的斜率一定存在,設直線l的方程為y=kx則d=2k故直線l的方程為y=±【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手工藝術(shù)師考試題及答案
- 社團工作考試題及答案
- 社會體育章節(jié)試題及答案
- 輕化工計算機考試題目及答案
- 脊柱調(diào)理小知識分享課件
- 輔警交管業(yè)務培訓課件
- 輔助執(zhí)法人員培訓課件
- 床旁CRRT在妊娠期高血壓疾病中的應用
- 2026年深圳中考語文模塊通關檢測試卷(附答案可下載)
- 2026年大學大二(口腔醫(yī)學技術(shù))口腔頜面外科技術(shù)階段測試題及答案
- 蘇州高新區(qū)(虎丘區(qū))市場監(jiān)督管理局公益性崗位招聘1人考試參考題庫及答案解析
- 《直腸癌NCCN治療指南》課件
- 江西省九江市2024-2025學年九年級上期末考試英語試題
- 二人合伙土地種植合同
- 湖南省張家界市永定區(qū)2024-2025學年八年級上學期期末考試數(shù)學試題(含答案)
- 環(huán)境監(jiān)測崗位職業(yè)技能考試題庫含答案
- 路燈基礎現(xiàn)澆混凝土檢驗批質(zhì)量驗收記錄
- 化學品作業(yè)場所安全警示標志大全
- 礦卡司機安全教育考試卷(帶答案)
- 中建淺圓倉漏斗模板支撐架安全專項施工方案
- 新能源材料與器件PPT完整全套教學課件
評論
0/150
提交評論