版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.經(jīng)過平面α外兩點,作與α平行的平面,則這樣的平面可以作()A.1個或2個B.0個或1個C.1個D.0個2.在三棱錐中,平面,,,點M為內(nèi)切圓的圓心,若,則三棱錐的外接球的表面積為()A. B. C. D.3.已知等差數(shù)列的前項和為,若,,則的值為()A. B.0 C. D.1824.直線的傾斜角為()A. B. C. D.5.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.6.已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長為()A.2cm B.4cm C.6cm D.8cm7.已知函數(shù),在中,內(nèi)角的對邊分別是,內(nèi)角滿足,若,則的面積的最大值為()A. B. C. D.8.為三角形ABC的一個內(nèi)角,若,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形C.等腰直角三角形 D.等腰三角形9.三角函數(shù)是刻畫客觀世界周期性變化規(guī)律的數(shù)學模型,單位圓定義法是任意角的三角函數(shù)常用的定義方法,是以角度(數(shù)學上最常用弧度制)為自變量,任意角的終邊與單位圓交點坐標為因變量的函數(shù).平面直角坐標系中的單位圓指的是平面直角坐標系上,以原點為圓心,半徑為單位長度的圓.問題:已知角的終邊與單位圓的交點為,則()A. B. C. D.10.已知銳角滿足,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列中,為的前項和,若,則____.12.函數(shù)的圖象過定點______.13.一個社會調(diào)查機構就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,要從這10000人中再用分層抽樣方法抽出80人作進一步調(diào)查,則在[1500,2000)(元)月收入段應抽出人.14.在中,,,,則的面積是__________.15.如圖記錄了甲乙兩名籃球運動員練習投籃時,進行的5組100次投籃的命中數(shù),若這兩組數(shù)據(jù)的中位數(shù)相等,平均數(shù)也相等,則______,_________.16.兩等差數(shù)列{an}和{bn}前n項和分別為Sn,Tn,且,則=__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.四棱錐中,底面是邊長為2的菱形,,是等邊三角形,為的中點,.(Ⅰ)求證:;(Ⅱ)若,能否在棱上找到一點,使平面平面?若存在,求的長.18.已知向量,,且(1)求·及;(2)若,求的最小值19.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.20.四棱錐S-ABCD中,底面ABCD為平行四邊形,側面底面ABCD,已知,為正三角形.(1)證明.(2)若,,求二面角的大小的余弦值.21.某城市理論預測2020年到2024年人口總數(shù)與年份的關系如下表所示:年份202x(年)01234人口數(shù)y(十萬)5781119(1)請在右面的坐標系中畫出上表數(shù)據(jù)的散點圖;(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;(3)據(jù)此估計2025年該城市人口總數(shù).(參考公式:,)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】若平面α外的兩點所確定的直線與平面α平行,則過該直線與平面α平行的平面有且只有一個;若平面α外的兩點所確定的直線與平面α相交,則過該直線的平面與平面α平行的平面不存在;故選B.2、C【解析】
求三棱錐的外接球的表面積即求球的半徑,則球心到底面的距離為,根據(jù)正切和MA的長求PA,再和MA的長即可通過勾股定理求出球半徑R,則表面積.【詳解】取BC的中點E,連接AE(圖略).因為,所以點M在AE上,因為,,所以,則的面積為,解得,所以.因為,所以.設的外接圓的半徑為r,則,解得.因為平面ABC,所以三棱錐的外接球的半徑為,故三棱錐P-ABC的外接球的表面積為.【點睛】此題關鍵點通過題干信息畫出圖像,平面ABC和底面的內(nèi)切圓圓心確定球心的位置,根據(jù)幾何關系求解即可,屬于三棱錐求外接球半徑基礎題目.3、B【解析】
由,可得,可得的值.【詳解】解:已知等差數(shù)列中,可得,即:,,故選B【點睛】本題主要考查等差數(shù)列的性質(zhì),從數(shù)列自身的特點入手是解決問題的關鍵.4、C【解析】
先根據(jù)直線方程得斜率,再求傾斜角.【詳解】因為直線,所以直線斜率為,所以傾斜角為,選C.【點睛】本題考查直線斜率以及傾斜角,考查基本分析求解能力,屬基本題.5、C【解析】由題意,得,設過的拋物線的切線方程為,聯(lián)立,,令,解得,即,不妨設,由雙曲線的定義得,,則該雙曲線的離心率為.故選C.6、C【解析】設扇形的半徑為R,則R2θ=2,∴R2=1R=1,∴扇形的周長為2R+θ·R=2+4=6(cm).7、B【解析】
通過將利用合一公式變?yōu)椋階求得A角,從而利用余弦定理得到b,c,的關系,從而利用均值不等式即可得到面積最大值.【詳解】,為三角形內(nèi)角,則,,當且僅當時取等號【點睛】本題主要考查三角函數(shù)恒等變換,余弦定理,面積公式及均值不等式,綜合性較強,意在考查學生的轉化能力,對學生的基礎知識掌握要求較高.8、B【解析】試題分析:由,兩邊平方得,即,又,則,所以為第三、四象限角或軸負半軸上的角,所以為鈍角.故正確答案為B.考點:1.三角函數(shù)的符號、平方關系;2.三角形內(nèi)角.9、A【解析】
先求出和的值,再根據(jù)誘導公式即可得解.【詳解】因為角的終邊與單位圓的交點為,所以,,則.故選:A.【點睛】本題考查任意角三角函數(shù)值的求法,考查誘導公式的應用,屬于基礎題,10、D【解析】
根據(jù)為銳角可求得,根據(jù)特殊角三角函數(shù)值可知,從而得到,進而求得結果.【詳解】,又,即本題正確選項:【點睛】本題考查三角函數(shù)值的求解問題,關鍵是能夠熟悉特殊角的三角函數(shù)值,根據(jù)角的范圍確定特殊角的取值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,結合等比數(shù)列的定義可知數(shù)列是以為首項,為公比的等比數(shù)列,代入等比數(shù)列的求和公式即可求解.【詳解】因為,所以,又因為所以數(shù)列是以為首項,為公比的等比數(shù)列,所以由等比數(shù)列的求和公式得,解得【點睛】本題考查利用等比數(shù)列的定義求通項公式以及等比數(shù)列的求和公式,屬于簡單題.12、【解析】
令真數(shù)為,求出的值,代入函數(shù)解析式可得出定點坐標.【詳解】令,得,當時,.因此,函數(shù)的圖象過定點.故答案為:.【點睛】本題考查對數(shù)型函數(shù)圖象過定點問題,一般利用真數(shù)為來求得,考查計算能力,屬于基礎題.13、16【解析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應抽出81×1.2=16人??键c:?頻率分布直方圖的應用;?分層抽樣。14、【解析】
計算,等腰三角形計算面積,作底邊上的高,計算得到答案.【詳解】,過C作于D,則故答案為【點睛】本題考查了三角形面積計算,屬于簡單題.15、3.5.【解析】
根據(jù)莖葉圖,將兩組數(shù)據(jù)按照從小到大順序排列,由中位數(shù)和平均數(shù)相等,即可解得的值.【詳解】甲乙兩組數(shù)據(jù)的中位數(shù)相等,平均數(shù)也相等對于甲組將數(shù)據(jù)按照從小到大順序排列后可知,中位數(shù)為65.所以乙組中位數(shù)也為65.根據(jù)乙組數(shù)據(jù)可得則由兩組的平均數(shù)相等,可知兩組的總數(shù)也相等,即解得故答案為:;【點睛】本題考查了莖葉圖的簡單應用,由莖葉圖求中位數(shù)和平均數(shù),屬于基礎題.16、【解析】數(shù)列{an}和{bn}為等差數(shù)列,所以.點睛:等差數(shù)列的??夹再|(zhì):{an}是等差數(shù)列,若m+n=p+q,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ).【解析】
(Ⅰ)連接,根據(jù)三角形性質(zhì)可得,由底面菱形的線段角度關系可證明,即證明平面,從而證明.(Ⅱ)易證平面平面,連接交于點,過作交于,即可證明平面,在三角形【詳解】(Ⅰ)證明:連接,是等邊三角形,為的中點,所以;又底面是菱形,,所以,,所以平面,平面,所以.(Ⅱ)由(Ⅰ)知,,所以平面,又平面即平面平面平面平面,又,所以平面連接交于點,過作交于,如下圖所示:所以平面,又平面所以平面平面因為,所以,即在等邊三角形中,可得在菱形中,由余弦定理可得在中,可得所以【點睛】本題考查了直線與平面垂直的判定方法,平面與平面垂直的判定及性質(zhì)的應用,余弦定理在解三角形中的用法,屬于中檔題.18、(1)見解析;(2).【解析】
(1)運用向量數(shù)量積的坐標表示,求出·;運用平面向量的坐標運算公式求出,然后求出模.(2)根據(jù)上(1)求出函數(shù)的解析式,配方,利用二次函數(shù)的性質(zhì)求出最小值.【詳解】(1)∵∴∴(2)∵∴∴【點睛】本題考查了平面向量數(shù)量積的坐標表示,以及平面向量的坐標加法運算公式.重點是二次函數(shù)求最小值問題.19、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.20、(1)證明見解析.(2)二面角的余弦值為.【解析】
(1)作于點,連接,根據(jù)面面垂直性質(zhì)可得底面ABCD,由三角形全等性質(zhì)可得,進而根據(jù)線面垂直判定定理證明平面,即可證明.(2)根據(jù)所給角度和線段關系,可證明以均為等邊三角形,從而取中點,連接,即可由線段長結合余弦定理求得二面角的大小.【詳解】(1)證明:作于點,連接,如下圖所示:因為側面底面ABCD,則底面ABCD,因為為正三角形,則,所以,即,又因為,所以,而,所以平面,所以.(2)由(1)可知,,,所以,又因為,所以,即為中點.由等腰三角形三線合一可知,在中,由等腰三角形三線合一可得,所以均為邊長為2的等邊三角形,取中點,連接,如下圖所示:由題意可知,即為二面角的平面角,所以在中由余弦定理可得,即二面角的余弦值為.【點睛】本題考查了線面垂直的判定定理,面面垂直的性質(zhì)應用,二面角夾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年低合金鋼中板企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年仿古銅爐鼎企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年冶金電極材料企業(yè)數(shù)字化轉型與智慧升級戰(zhàn)略分析研究報告
- 安全員A證考試考前沖刺模擬題庫含完整答案詳解【典優(yōu)】
- 安全員A證考試練習題及完整答案詳解【有一套】
- 施工設備維護與安全檢查方案
- BIM技術在竣工驗收中的應用方案
- 民航職業(yè)技能鑒定考試彩蛋押題及參考答案詳解【滿分必刷】
- 安全員A證考試通關模擬卷及參考答案詳解(完整版)
- 安全員A證考試強化訓練附答案詳解(鞏固)
- 萬科施工管理辦法
- 2025至2030中國養(yǎng)老健康行業(yè)深度發(fā)展研究與企業(yè)投資戰(zhàn)略規(guī)劃報告
- Roland羅蘭樂器AerophoneAE-20電吹管ChineseAerophoneAE-20OwnersManual用戶手冊
- 2025年保安員資格考試題目及答案(共100題)
- 黨群工作部室部管理制度
- 2025至2030年中國兔子養(yǎng)殖行業(yè)市場現(xiàn)狀調(diào)查及投資方向研究報告
- 委外施工安全試題及答案
- DBT29-320-2025 天津市建筑工程消能減震隔震技術規(guī)程
- 產(chǎn)品技術維護與保養(yǎng)手冊
- 2024年國家電網(wǎng)招聘之電工類考試題庫(突破訓練)
- 中建公司建筑機電設備安裝工程標準化施工手冊
評論
0/150
提交評論