基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究_第1頁
基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究_第2頁
基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究_第3頁
基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究_第4頁
基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究基于支持向量機的冷水機組故障檢測與診斷優(yōu)化研究

摘要:冷水機組是現(xiàn)代空調(diào)系統(tǒng)的重要組成部分,其穩(wěn)定運行對于舒適的室內(nèi)環(huán)境至關(guān)重要。然而,冷水機組故障頻繁發(fā)生,給用戶帶來諸多不便和經(jīng)濟損失。為此,本文基于支持向量機(SupportVectorMachine,SVM)算法,針對冷水機組故障檢測與診斷進行了優(yōu)化研究。首先,通過數(shù)據(jù)采集和處理,建立了包括機組水流量、壓縮機電流、冷水溫度等在內(nèi)的故障檢測模型,實現(xiàn)了故障信號的采集和處理。其次,針對模型過擬合的問題,采用LASSO算法對模型進行優(yōu)化,加強了模型的泛化能力。最后,通過對真實數(shù)據(jù)的測試和對比分析,驗證了基于SVM算法的冷水機組故障檢測模型的有效性和優(yōu)越性。

關(guān)鍵詞:支持向量機;冷水機組;故障檢測;LASSO算法;優(yōu)化研究

Abstract:Chilledwaterunitsareimportantcomponentsofmodernairconditioningsystems.Thestableoperationofchilledwaterunitsiscrucialforacomfortableindoorenvironment.However,chillerfailuresoccurfrequently,causinginconvenienceandeconomiclossestousers.Therefore,basedontheSupportVectorMachine(SVM)algorithm,thispaperoptimizesthechillerfaultdetectionanddiagnosis.Firstly,bycollectingandprocessingdata,thefaultdetectionmodelincludingwaterflowrate,compressorcurrent,andchilledwatertemperatureisestablishedtorealizethecollectionandprocessingoffaultsignals.Secondly,tosolvetheproblemofoverfitting,theLASSOalgorithmisusedtooptimizethemodel,enhancingthemodel'sgeneralizationability.Finally,throughtestingandcomparativeanalysisofrealdata,theeffectivenessandsuperiorityofthechillerfaultdetectionmodelbasedontheSVMalgorithmareverified.

Keywords:supportvectormachines;chilledwaterunits;faultdetection;LASSOalgorithm;optimizationresearcInrecentyears,theuseofchilledwaterunitshasbecomeincreasinglycommoninvariousfields,suchasairconditioningandrefrigerationsystems.However,thecomplexityofthesesystemsandthevarietyofpossiblefaultsmakeitdifficulttomanuallydetectanddiagnosefaults.

Toaddressthisissue,theresearchpresentedinthispaperproposesafaultdetectionmodelbasedonthesupportvectormachine(SVM)algorithm.First,themodelcollectsandprocessesfaultsignalsfromthechilledwaterunit,includingtemperature,pressure,andflowratedata.ThesesignalsarethenusedtotraintheSVMalgorithmtoidentifydifferenttypesoffaults.

Onechallengeindevelopingafaultdetectionmodelistheproblemofoverfitting,wherethemodelistoocloselyfittedtothetrainingdataandfailstogeneralizetonewdata.Toovercomethischallenge,theLASSOalgorithmisappliedtooptimizetheSVMmodelbyselectingthemostimportantfeaturesandreducingtheimpactofirrelevantorredundantdata.Thisapproachimprovesthemodel'sgeneralizationabilityandreducestheriskofoverfitting.

Theproposedfaultdetectionmodelistestedandcomparedagainstothermethodsusingrealdatafromachilledwaterunit.TheresultsdemonstratetheeffectivenessandsuperiorityoftheSVM-basedmodel,withhigheraccuracyandfasterdetectionoffaultscomparedtoothermethods.

Inconclusion,thefaultdetectionmodelbasedontheSVMalgorithmandoptimizedbytheLASSOalgorithmoffersapromisingapproachtoimprovethereliabilityandefficiencyofchilledwaterunits.FurtherresearchcouldexploretheintegrationofthismodelwithothercontrolandmonitoringsystemstoenhancefaultdiagnosisandmanagementinthesesystemsOnepotentialareaoffurtherresearchistheapplicationoftheSVM-basedfaultdetectionmodeltoothertypesofHVACsystems,suchasairhandlingunits,rooftopunits,orhydronicsystems.EachofthesesystemshasuniquecharacteristicsandoperatingconditionsthatmayrequiremodificationstotheSVMmodel.Additionally,researchcouldexploretheeffectivenessofcombiningtheSVMmodelwithothermachinelearningalgorithmsorexpertsystemstoimprovefaultdiagnosisanddecision-making.

Anotherareaforfutureresearchistheintegrationofthefaultdetectionmodelwithpredictivemaintenancestrategies.Byaccuratelydiagnosingfaultsandpredictingwhentheyarelikelytooccur,theSVM-basedmodelcouldenableproactivemaintenanceandreducetheriskofequipmentfailure.Thiscouldresultinsignificantcostsavingsandincreasedequipmentlifespan.

Finally,researchcouldexaminetheimpactoftheSVM-basedfaultdetectionmodelonenergyefficiencyandenvironmentalsustainabilityinHVACsystems.Byquicklyidentifyinganddiagnosingfaults,themodelcouldpreventenergywasteandreducegreenhousegasemissionsassociatedwithunnecessaryequipmentoperationorreplacement.Thiscouldalignwithbroadersustainabilitygoalsandregulationsrelatedtobuildingenergyefficiency.

Overall,theSVM-basedfaultdetectionmodeloptimizedbytheLASSOalgorithmoffersapromisingapproachtoimprovingthereliabilityandefficiencyofchilledwaterunits.FurtherresearchanddevelopmentcouldenhanceitsapplicabilityandimpactinHVACsystemsandsupportthebroadergoalsofsustainabilityandenergyefficiencyFutureresearchanddevelopmentinthefieldofHVACsystemscouldfocusonimprovingandexpandingtheapplicationoftheSVM-basedfaultdetectionmodel.Oneareaofimprovementcouldbeincreasingtheaccuracyofthemodelbyincludingmorefeaturesanddatasets.Forexample,additionalsensordatasuchasflowratesandpressurelevelscouldbeusedtoenhancethemodel'sabilitytodetectfaults.

Anotherareaforfurtherexplorationistheintegrationofmachinelearningalgorithmswithbuildingautomationsystems.Thiswouldenableamoreautomatedapproachtofaultdetectionandmaintenance,wherethemachinelearningalgorithmscouldautomaticallyadjustthesystemsettingstopreventormitigatefaults.

Additionally,researchcouldfocusonthedevelopmentofmoresustainableandefficientHVACsystems.Forexample,theuseofrenewableenergysourcessuchassolarorgeothermalpowercouldreducetheenvironmentalimpactofHVACsystems.Furthermore,thedesignofbuildingsthemselvescouldbeoptimizedtoreducetheneedforHVACsystemsthroughimprovedinsulationandnaturalventilation.

Inconclusion,theSVM-basedfaultdetectionmodeloptimizedbytheLASSOalgorithmisapromisingtoolforimprovingthereliabilityandefficiencyofchilledwaterunitsinHVACsystems.Furtherresearchanddevelopmentcanenhancetheapplicabilityofthismodelandsupportbroadersustainabilityandenergyefficiencygoa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論