河南省安陽市三十六中2023年高一數(shù)學第二學期期末考試模擬試題含解析_第1頁
河南省安陽市三十六中2023年高一數(shù)學第二學期期末考試模擬試題含解析_第2頁
河南省安陽市三十六中2023年高一數(shù)學第二學期期末考試模擬試題含解析_第3頁
河南省安陽市三十六中2023年高一數(shù)學第二學期期末考試模擬試題含解析_第4頁
河南省安陽市三十六中2023年高一數(shù)學第二學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,兩個正方形和所在平面互相垂直,設、分別是和的中點,那么:①;②平面;③;④、異面.其中不正確的序號是()A.① B.② C.③ D.④2.在中,角,,的對邊分別為,,,且.則()A. B.或 C. D.3.使函數(shù)是偶函數(shù),且在上是減函數(shù)的的一個值是()A. B. C. D.4.如圖,設,是平面內(nèi)相交的兩條數(shù)軸,,分別是與軸,軸正方向同向的單位向量,且,若向量,則把有序數(shù)對叫做向量在坐標系中的坐標.假設在坐標系中的坐標為,則()A. B. C. D.5.若直線與圓相切,則()A. B. C. D.6.運行如圖程序,若輸入的是,則輸出的結(jié)果是()A.3 B.9 C.0 D.7.中國數(shù)學家劉微在《九章算術(shù)注》中提出“割圓”之說:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣.”意思是“圓內(nèi)接正多邊形的邊數(shù)無限增加的時候,它的周長的極限是圓的周長,它的面積的極限是圓的面積”.如圖,若在圓內(nèi)任取一點,則此點取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為()A. B. C. D.8.函數(shù)的部分圖象如圖所示,則的單調(diào)遞減區(qū)間為A.B.C.D.9.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.10.三棱錐則二面角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知空間中的三個頂點的坐標分別為,則BC邊上的中線的長度為________.12.若,則函數(shù)的值域為________.13.設,,,,,為坐標原點,若、、三點共線,則的最小值是_______.14.把函數(shù)的圖像上各點向右平移個單位,再把橫坐標變?yōu)樵瓉淼囊话?,縱坐標擴大到原來的4倍,則所得的函數(shù)的對稱中心坐標為________15.計算:______.16.在中,角的對邊分別為,若,則角________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設等差數(shù)列的前項和為,已知,,;(1)求公差的取值范圍;(2)判斷與0的大小關(guān)系,并說明理由;(3)指出、、、中哪個最大,并說明理由;18.已知是遞增的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)為各項非零的等差數(shù)列,其前n項和為,已知,求數(shù)列的前n項和.19.對于函數(shù)和實數(shù),若存在,使成立,則稱為函數(shù)關(guān)于的一個“生長點”.若為函數(shù)關(guān)于的一個“生長點”,則______.20.如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.21.已知數(shù)列的前項和,且;(1)求它的通項.(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

取的中點,連接,,連接,,由線面垂直的判定和性質(zhì)可判斷①;由三角形的中位線定理,以及線面平行的判定定理可判斷②③④.【詳解】解:取的中點,連接,,連接,,正方形和所在平面互相垂直,、分別是和的中點,可得,,平面,可得,故①正確;由為的中位線,可得,且平面,可得平面,故②③正確,④錯誤.故選:D.【點睛】本題主要考查空間線線和線面的位置關(guān)系,考查轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎題.2、A【解析】

利用余弦定理和正弦定理化簡已知條件,求得的值,即而求得的大小.【詳解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的內(nèi)角,所以為正數(shù),所以,為三角形的內(nèi)角,所以.故選:A【點睛】本小題主要考查正弦定理和余弦定理邊角互化,考查三角形的內(nèi)角和定理,考查兩角和的正弦公式,屬于基礎題.3、B【解析】

先根據(jù)輔助角公式化簡,再根據(jù)奇偶性及在在上是減函數(shù)為減函數(shù)即可算出的范圍?!驹斀狻坑深}意得:因為是偶函數(shù),所以,又因為在的減區(qū)間為,,在上是減函數(shù),所以當時滿足,選B.【點睛】本題主要考查了三角函數(shù)的性質(zhì):奇偶性質(zhì)、單調(diào)性以及輔助角公式。型為奇函數(shù),為偶函數(shù)。其中輔助角公式為。屬于中等題。4、D【解析】

可得.【詳解】向量,則.故選:.【點睛】本題主要考查了向量模的運算和向量的數(shù)量積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、C【解析】

利用圓心到直線的距離等于圓的半徑即可求解.【詳解】由題得圓的圓心坐標為(0,0),所以.故選C【點睛】本題主要考查直線和圓的位置關(guān)系,意在考查學生對該知識的理解掌握水平,屬于基礎題.6、B【解析】分析:首先根據(jù)框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結(jié)果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結(jié)果為9,故選B.點睛:該題考查的是有關(guān)程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應的函數(shù)解析式應該代入哪個,從而求得最后的結(jié)果,屬于簡單題目.7、C【解析】

設出圓的半徑,表示出圓的面積和圓內(nèi)接正六邊形的面積,即可由幾何概型概率計算公式得解.【詳解】設圓的半徑為則圓的面積為圓內(nèi)接正六邊形的面積為由幾何概型概率可知,在圓內(nèi)任取一點,則此點取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為故選:C【點睛】本題考查了圓的面積及圓內(nèi)接正六邊形的面積求法,幾何概型概率的計算公式,屬于基礎題.8、D【解析】

根據(jù)圖象可得最小正周期,求得;利用零點和的符號可確定的取值;令,解不等式即可求得單調(diào)遞減區(qū)間.【詳解】由圖象可知:又,,由圖象可知的一個可能的取值為令,,解得:,即的單調(diào)遞減區(qū)間為:,本題正確選項:【點睛】本題考查利用圖象求解余弦型函數(shù)的解析式、余弦型函數(shù)單調(diào)區(qū)間的求解問題;關(guān)鍵是能夠靈活應用整體對應的方式來求解解析式和單調(diào)區(qū)間,屬于常考題型.9、A【解析】

該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運用,屬基礎題.10、B【解析】

P在底面的射影是斜邊的中點,設AB中點為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【詳解】因為AB=10,BC=8,CA=6所以底面為直角三角形又因為PA=PB=PC所以P在底面的射影為直角三角形ABC的外心,為AB中點.設AB中點為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DEBC=4,所以∠PED即為二面角P﹣AC﹣B的平面角.因為PD為三角形PAB的中線,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小為60°故答案為60°.【點睛】本題考查的知識點是二面角的平面角及求法,確定出二面角的平面角是解答本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先求出BC的中點,由此能求出BC邊上的中線的長度.【詳解】解:因為空間中的三個頂點的坐標分別為,所以BC的中點為,所以BC邊上的中線的長度為:,故答案為:.【點睛】本題考查三角形中中線長的求法,考查中點坐標公式、兩點間距離的求法等基礎知識,考查運算求解能力,是基礎題.12、【解析】

令,結(jié)合可得,本題轉(zhuǎn)化為求二次函數(shù)在的值域,求解即可.【詳解】,.令,,則,由二次函數(shù)的性質(zhì)可知,當時,;當時,.故所求值域為.【點睛】本題考查了函數(shù)的值域,利用換元法是解決本題的一個方法.13、【解析】

根據(jù)三點共線求得的的關(guān)系式,利用基本不等式求得所求表達式的最小值.【詳解】依題意,由于三點共線,所以,化簡得,故,當且僅當,即時,取得最小值【點睛】本小題主要考查三點共線的向量表示,考查利用基本不等式求最小值,屬于基礎題.14、,【解析】

根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標變?yōu)樵瓉淼囊话?,可得,把函?shù)縱坐標擴大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】

在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計算能力,屬于基礎題.16、【解析】

根據(jù)得,利用余弦定理即可得解.【詳解】由題:,,,由余弦定理可得:,.故答案為:【點睛】此題考查根據(jù)余弦定理求解三角形的內(nèi)角,關(guān)鍵在于熟練掌握余弦定理公式,準確計算求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),理由見解析;(3),理由見解析;【解析】

(1)由,,,得到不等式且,即可求解公差的取值范圍;(2)由,,結(jié)合等差數(shù)列的性質(zhì)和前項和公式,得到且,即可求解;(3)有(2)知,可得,數(shù)列為遞減數(shù)列,即可求解.【詳解】(1)由題意,等差數(shù)列的前項和為,且,,,可得,,即且,解得,即公差的取值范圍是.(2)由,,可得且,即且,所以,所以.(3)有(2)知,可得,數(shù)列為遞減數(shù)列,當時,,當時,,所以、、、中最大.【點睛】本題主要考查了等差數(shù)列的前項和公式,等差數(shù)列的性質(zhì),以及等差數(shù)列的單調(diào)性的應用,其中解答熟記等差數(shù)列的前項和公式,等差數(shù)列的性質(zhì),合理利用數(shù)列的單調(diào)性是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2)【解析】

(1){an}是遞增的等比數(shù)列,公比設為q,由等比數(shù)列的中項性質(zhì),結(jié)合等比數(shù)列的通項公式解方程可得所求;(2)運用等差數(shù)列的求和公式和等差數(shù)列中項性質(zhì),求得bn=2n+1,再由數(shù)列的錯位相減法求和,化簡可得所求和.【詳解】(1)∵是遞增的等比數(shù)列,∴,,又,∴,是的兩根,∴,,∴,.(2)∵,∴由已知得,∴∴,化簡可得.【點睛】本題考查數(shù)列的通項和求和,等差等比數(shù)列的通項通常是列方程組解首項及公差(比),數(shù)列求和常見的方法有:裂項相消和錯位相減法,考查計算能力,屬于中等題.19、【解析】

由為函數(shù)關(guān)于的一個“生長點”,得到由誘導公式可得答案.【詳解】解:為函數(shù)關(guān)于的一個“生長點”,,故答案為:.【點睛】本題主要考查利用誘導公式進行化簡求值,及函數(shù)的創(chuàng)新題型,屬于中檔題.20、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理運算得到,又由(Ⅰ)的結(jié)論得到,可得平面,再利用等體積轉(zhuǎn)化有,計算結(jié)果.【詳解】(Ⅰ)折疊前,因為四邊形為菱形,所以;所以折疊后,,,又,平面,所以平面因為四邊形為菱形,所以.又點為線段的中點,所以.所以四邊形為平行四邊形.所以.又平面,所以平面.因為平面,所以平面平面.(Ⅱ)圖1中,由已知得,,所以圖2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱錐的體積為.【點睛】本題考查線面垂直、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎知識,考查了三棱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論