版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,則()A.12 B. C. D.82.從裝有兩個紅球和三個黑球的口袋里任取兩個球,那么互斥而不對立的兩個事件是()A.“至少有一個黑球”與“都是黑球” B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球” D.“至少有一個黑球”與“都是紅球”3.用長為4,寬為2的矩形做側面圍成一個圓柱,此圓柱軸截面面積為()A.8 B. C. D.4.從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是()A.至少有一個紅球與都是紅球B.至少有一個紅球與都是白球C.恰有一個紅球與恰有二個紅球D.至少有一個紅球與至少有一個白球5.若是的重心,,,分別是角的對邊,若,則角()A. B. C. D.6.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.7.設,則的取值范圍是()A. B. C. D.8.己知ΔABC中,角A,B,C所對的邊分別是a,b,c.若A=45°,B=30°,a=2,則bA.3-1 B.1 C.2 D.9.某工廠對一批新產(chǎn)品的長度(單位:)進行檢測,如下圖是檢測結果的頻率分布直方圖,據(jù)此估計這批產(chǎn)品的中位數(shù)與平均數(shù)分別為()A.20,22.5 B.22.5,25 C.22.5,22.75 D.22.75,22.7510.設為等比數(shù)列,給出四個數(shù)列:①,②,③,④.其中一定為等比數(shù)列的是()A.①③ B.②④ C.②③ D.①②二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調(diào)遞減區(qū)間為______.12.在中,,且,則.13.把數(shù)列的所有數(shù)按照從大到小的原則寫成如下數(shù)表:第行有個數(shù),第行的第個數(shù)(從左數(shù)起)記為,則________.14.已知兩條直線,將圓及其內(nèi)部劃分成三個部分,則的取值范圍是_______;若劃分成的三個部分中有兩部分的面積相等,則的取值有_______種可能.15.函數(shù)的最大值是__________.16.若數(shù)列滿足,,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,,且邊上的中線長為,(1)求角的大??;(2)求的面積.18.已知,,,求:的值.19.在中,的對邊分別為,已知.(1)求的值;(2)若的面積為,,求的值.20.已知,(1)求;(2)若,求.21.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)向量的坐標表示求出,即可得到模長.【詳解】由題,,所以.故選:C【點睛】此題考查向量的數(shù)乘運算和減法運算的坐標表示,并求向量的模長,關鍵在于熟記公式,準確求解.2、C【解析】分析:利用對立事件、互斥事件的定義求解.詳解:從裝有兩個紅球和三個黑球的口袋里任取兩個球,在A中,“至少有一個黑球”與“都是黑球”能同時發(fā)生,不是互斥事件,故A錯誤;在B中,“至少有一個黑球”與“至少有一個紅球”能同時發(fā)生,不是互斥事件,故B錯誤;在C中,“恰好有一個黑球”與“恰好有兩個黑球”不能同時發(fā)生,但能同時不發(fā)生,是互斥而不對立的兩個事件,故C正確;在D中,“至少有一個黑球”與“都是紅球”是對立事件,故D錯誤.故答案為:C點睛:(1)本題主要考查互斥事件和對立事件的定義,意在考查學生對這些基礎知識的掌握水平.(2)互斥事件指的是在一次試驗中,不可能同時發(fā)生的兩個事件,對立事件指的是在一次試驗中,不可能同時發(fā)生的兩個事件,且在一次試驗中,必有一個發(fā)生的兩個事件.注意理解它們的區(qū)別和聯(lián)系.3、B【解析】
分別討論當圓柱的高為4時,當圓柱的高為2時,求出圓柱軸截面面積即可得解.【詳解】解:當圓柱的高為4時,設圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當圓柱的高為2時,設圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點睛】本題考查了圓柱軸截面面積的求法,屬基礎題.4、C【解析】
從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,不同的取球情況共有以下幾種:3個球全是紅球;2個紅球和1個白球;1個紅球2個白球;3個全是白球.選項A中,事件“都是紅球”是事件“至少有一個紅球”的子事件;選項B中,事件“至少有一個紅球”與事件“都是白球”是對立事件;選項D中,事件“至少有一個紅球”與事件“至少有一個白球”的事件為“2個紅球1個白球”與“1個紅球2個白球”;選項C中,事件“恰有一個紅球”與事件“恰有2個紅球”互斥不對立,故選C.5、D【解析】試題分析:由于是的重心,,,代入得,整理得,,因此,故答案為D.考點:1、平面向量基本定理;2、余弦定理的應用.6、D【解析】
過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).7、B【解析】
由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎題.8、B【解析】
由正弦定理可得.【詳解】∵asinA=故選B.【點睛】本題考查正弦定理,解題時直接應用正弦定理可解題,本題屬于基礎題.9、C【解析】
根據(jù)平均數(shù)的定義即可求出.根據(jù)頻率分布直方圖中,中位數(shù)的左右兩邊頻率相等,列出等式,求出中位數(shù)即可.【詳解】:根據(jù)頻率分布直方圖,得平均數(shù)為1(12.1×0.02+17.1×0.04+22.1×0.08+27.1×0.03+32.1×0.03)=22.71,∵0.02×1+0.04×1=0.3<0.1,0.3+0.08×1=0.7>0.1;∴中位數(shù)應在20~21內(nèi),設中位數(shù)為x,則0.3+(x﹣20)×0.08=0.1,解得x=22.1;∴這批產(chǎn)品的中位數(shù)是22.1.故選C.【點睛】本題考查了利用頻率分布直方圖求數(shù)據(jù)的中位數(shù)平均數(shù)的應用問題,是基礎題目.10、D【解析】
設,再利用等比數(shù)列的定義和性質(zhì)逐一分析判斷每一個選項得解.【詳解】設,①,,所以數(shù)列是等比數(shù)列;②,,所以數(shù)列是等比數(shù)列;③,不是一個常數(shù),所以數(shù)列不是等比數(shù)列;④,不是一個常數(shù),所以數(shù)列不是等比數(shù)列.故選D【點睛】本題主要考查等比數(shù)列的判定,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用二倍角降冪公式和輔助角公式可得出,然后解不等式,即可得出函數(shù)的單調(diào)遞減區(qū)間.【詳解】,解不等式,得,因此,函數(shù)的單調(diào)遞減區(qū)間為.故答案為:.【點睛】本題考查正弦型三角函數(shù)單調(diào)區(qū)間的求解,一般利用三角恒等變換思想將三角函數(shù)解析式化簡,考查計算能力,屬于中等題.12、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或?3(舍去).考點:1、正弦定理及余弦定理;2、三角形內(nèi)角和定理及兩角和的余弦公式.13、【解析】
第行有個數(shù)知每行數(shù)的個數(shù)成等比數(shù)列,要求,先要求出,就必須求出前行一共出現(xiàn)了多少個數(shù),根據(jù)等比數(shù)列的求和公式可求,而由可知,每一行數(shù)的分母成等差數(shù)列,可求出,令,即可求出.【詳解】由第行有個數(shù),可知每一行數(shù)的個數(shù)成等比數(shù)列,首項是,公比是,所以,前行共有個數(shù),所以,第行第一個數(shù)為,,因此,.故答案為:.【點睛】本題考查數(shù)列的性質(zhì)和應用,解題時要注意數(shù)陣的應用,同時要找出數(shù)陣的規(guī)律,考查推理能力,屬于中等題.14、3【解析】
易知直線過定點,再結合圖形求解.【詳解】依題意得直線過定點,如圖:若兩直線將圓分成三個部分,則直線必須與圓相交于圖中陰影部分.又,所以的取值范圍是;當直線位于時,劃分成的三個部分中有兩部分的面積相等.【點睛】本題考查直線和圓的位置關系的應用,直線的斜率,結合圖形是此題的關鍵.15、【解析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎題.16、【解析】
由,化簡得,則為等差數(shù)列,結合已知條件得.【詳解】由,化簡得,且,,得,所以是以為首項,以為公差的等差數(shù)列,所以,即故答案為:【點睛】本題考查了數(shù)列的遞推式,考查了判斷數(shù)列是等差數(shù)列的方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(1)本題可根據(jù)三角函數(shù)相關公式將化簡為,然后根據(jù)即可求出角的大?。?2)本題首先可設的中點為,然后根據(jù)向量的平行四邊形法則得到,再然后通過化簡計算即可求得,最后通過三角形面積公式即可得出結果.【詳解】(1)由正弦定理邊角互換可得,所以.因為,所以,即,即,整理得.因為,所以,所以,即,所以.因為,所以,即.(2)設的中點為,根據(jù)向量的平行四邊形法則可知所以,即,因為,,所以,解得(負值舍去).所以.【點睛】本題考查三角恒等變換公式及解三角形相關公式的應用,考查了向量的平行四邊形法則以及向量的運算,考查了化歸與轉化思想,體現(xiàn)了綜合性,是難題.18、【解析】
求出和的取值范圍,利用同角三角函數(shù)的基本關系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點睛】本題考查利用兩角差的余弦公式求值,解題的關鍵就是利用已知角來表示所求角,考查計算能力,屬于中等題.19、(Ⅰ)(Ⅱ)【解析】
(1)根據(jù)二倍角和誘導公式可得的值;(2)根據(jù)面積公式求,然后利用余弦定理求,最后根據(jù)正弦定理求的值.【詳解】(1),,所以原式整理為,解得:(舍)或,;(2),解得,根據(jù)余弦定理,,,代入解得:,.【點睛】本題考查了根據(jù)正余弦定理解三角形,屬于簡單題.20、(1)(2)【解析】
(1)兩邊平方可得,根據(jù)同角公式可得,;(2)根據(jù)兩角和的正切公式,計算可得結果.【詳解】(1)因為,所以,即.因為,所以,所以,故.(2)因為,所以,所以.【點睛】本題考查了兩角同角公式,二倍角正弦公式,兩角和的正切公式,屬于基礎題.21、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】
(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲科宮頸超聲檢查注意事項指南
- 2026年三明市公安局關于招聘警務輔助人員的備考題庫及一套參考答案詳解
- 2026年廣州船舶及海洋工程設計研究院招聘備考題庫完整參考答案詳解
- 2026年萬安第二中心幼兒園招聘啟示備考題庫及參考答案詳解
- 2026年國投證券國際金融控股有限公司招聘備考題庫完整答案詳解
- 2026年定西市消防救援支隊招聘戰(zhàn)勤保障專職消防員的備考題庫及答案詳解1套
- 2026年國藥集團威奇達藥業(yè)有限公司招聘備考題庫帶答案詳解
- 2026年廣東派潭鎮(zhèn)中心衛(wèi)生院鄉(xiāng)村醫(yī)生招聘6人備考題庫附答案詳解
- 2026年寧波市正始中學公開招聘事業(yè)編制教師備考題庫及一套答案詳解
- 2026年中服(三亞)免稅品有限公司招聘備考題庫及答案詳解1套
- 兒童呼吸道感染用藥指導
- 2025年國家基本公共衛(wèi)生服務考試試題(附答案)
- 2025年醫(yī)院社區(qū)衛(wèi)生服務中心工作總結及2026年工作計劃
- 2025年濟寧職業(yè)技術學院毛澤東思想和中國特色社會主義理論體系概論期末考試模擬題必考題
- 委托作品協(xié)議書
- m的認主協(xié)議書
- 2025年及未來5年市場數(shù)據(jù)中國機電安裝工程市場調(diào)查研究及行業(yè)投資潛力預測報告
- kv高壓線防護施工方案
- 住建局執(zhí)法證考試題庫及答案2025
- 主管護師聘任述職報告
- AI搜索時代:從GEO到AIBE的品牌新藍圖
評論
0/150
提交評論