版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若拋物線上一點(diǎn)到焦點(diǎn)的距離是該點(diǎn)到軸距離的3倍,則()A. B. C. D.72.在一次隨機(jī)試驗(yàn)中,彼此互斥的事件A,B,C,D的概率分別是0.1,0.2,0.3,0.4,則下列說法正確的是A.A+B與C是互斥事件,也是對(duì)立事件 B.B+C與D不是互斥事件,但是對(duì)立事件C.A+C與B+D是互斥事件,但不是對(duì)立事件 D.B+C+D與A是互斥事件,也是對(duì)立事件3.函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的個(gè)數(shù)為()A. B. C. D.4.從2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中的2人都是女同學(xué)的概率為A. B. C. D.5.若,滿足不等式組,則的最小值為()A.-5 B.-4 C.-3 D.-26.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的值等于()A.-3 B.-10 C.0 D.-27.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.8.用長(zhǎng)為4,寬為2的矩形做側(cè)面圍成一個(gè)圓柱,此圓柱軸截面面積為()A.8 B. C. D.9.在2018年1月15日那天,某市物價(jià)部門對(duì)本市的5家商場(chǎng)的某商品的一天銷售量及其價(jià)格進(jìn)行調(diào)查,5家商場(chǎng)的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:價(jià)格x99.5m10.511銷售量y11n865由散點(diǎn)圖可知,銷售量y與價(jià)格x之間有較強(qiáng)的線性相關(guān)關(guān)系,其線性回歸方程是y=-3.2x+40,且m+n=20,則其中的n=A.10 B.11 C.12 D.10.510.已知數(shù)列an滿足a1=1,aA.32021-18 B.32020二、填空題:本大題共6小題,每小題5分,共30分。11.已知是等比數(shù)列,,,則公比______.12.某四棱錐的三視圖如圖所示,如果網(wǎng)格紙上小正方形的邊長(zhǎng)為1,那么該四棱錐最長(zhǎng)棱的棱長(zhǎng)為.13.中,內(nèi)角,,所對(duì)的邊分別是,,,且,,則的值為__________.14.方程組的增廣矩陣是________.15.在中,分別是角的對(duì)邊,,且的周長(zhǎng)為5,面積,則=______16.已知,,,,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知中,角的對(duì)邊分別為.(1)若依次成等差數(shù)列,且公差為2,求的值;(2)若的外接圓面積為,求周長(zhǎng)的最大值.18.如圖所示,在平面四邊形中,為正三角形.(1)在中,角的對(duì)邊分別為,若,求角的大??;(2)求面積的最大值.19.如圖,當(dāng)甲船位于處時(shí)獲悉,在其正東方向相距20海里的處有一艘漁船遇險(xiǎn)等待營(yíng)救.甲船立即前往救援,同時(shí)把消息告知在甲船的南偏西30°,相距10海里處的乙船,試問乙船應(yīng)朝北偏東多少度的方向沿直線前往處救援?(角度精確到1°,參考數(shù)據(jù):,)20.在梯形ABCD中,,,,.(1)求AC的長(zhǎng);(2)求梯形ABCD的高.21.的內(nèi)角的對(duì)邊分別為.(1)求證:;(2)在邊上取一點(diǎn)P,若.求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】由題意,焦點(diǎn)坐標(biāo),所以,解得,故選A。2、D【解析】
不可能同時(shí)發(fā)生的事件為互斥事件,當(dāng)兩個(gè)互斥事件的概率和為1,則兩個(gè)事件為對(duì)立事件,易得答案.【詳解】因?yàn)槭录舜嘶コ猓耘c是互斥事件,因?yàn)椋?,,所以與是對(duì)立事件,故選D.【點(diǎn)睛】本題考查互斥事件、對(duì)立事件的概念,注意對(duì)立事件一定是互斥事件,而互斥事件不一定是對(duì)立事件.3、D【解析】
通過對(duì)兩函數(shù)的表達(dá)式進(jìn)行化簡(jiǎn),變成我們熟悉的函數(shù)模型,比如反比例、一次函數(shù)、指數(shù)、對(duì)數(shù)及三角函數(shù),看圖直接判斷【詳解】由,作圖如下:共6個(gè)交點(diǎn),所以答案選擇D【點(diǎn)睛】函數(shù)圖象交點(diǎn)個(gè)數(shù)問題與函數(shù)零點(diǎn)、方程根可以作相應(yīng)等價(jià),用函數(shù)零點(diǎn)及方程根本題不現(xiàn)實(shí),所以我們更多去考慮分別作圖象,直接看交點(diǎn)個(gè)數(shù).4、D【解析】分析:分別求出事件“2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù)”的總可能及事件“選中的2人都是女同學(xué)”的總可能,代入概率公式可求得概率.詳解:設(shè)2名男同學(xué)為,3名女同學(xué)為,從以上5名同學(xué)中任選2人總共有共10種可能,選中的2人都是女同學(xué)的情況共有共三種可能則選中的2人都是女同學(xué)的概率為,故選D.點(diǎn)睛:應(yīng)用古典概型求某事件的步驟:第一步,判斷本試驗(yàn)的結(jié)果是否為等可能事件,設(shè)出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個(gè)數(shù);第三步,利用公式求出事件的概率.5、A【解析】
畫出不等式組表示的平面區(qū)域,平移目標(biāo)函數(shù),找出最優(yōu)解,求出的最小值.【詳解】畫出,滿足不等式組表示的平面區(qū)域,如圖所示平移目標(biāo)函數(shù)知,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由得,即點(diǎn)坐標(biāo)為∴的最小值為,故選A.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.6、A【解析】
第一次循環(huán),;第二次循環(huán),;第三次循環(huán),,當(dāng)時(shí),不成立,循環(huán)結(jié)束,此時(shí),故選A.7、A【解析】
根據(jù)圖象求出即可得到函數(shù)解析式.【詳解】顯然,因?yàn)?,所以,所以,由得,所以,即,,因?yàn)?,所以,所?故選:A【點(diǎn)睛】本題考查了根據(jù)圖象求函數(shù)解析式,利用周期求,代入最高點(diǎn)的坐標(biāo)求是解題關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】
分別討論當(dāng)圓柱的高為4時(shí),當(dāng)圓柱的高為2時(shí),求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時(shí),設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點(diǎn)睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.9、A【解析】
由表求得x,y,代入回歸直線方程16m+5n=210,聯(lián)立方程組,即可求解,得到答案.【詳解】由題意,5家商場(chǎng)的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù),可得x=9+9.5+m+10.5+115又由回歸直線的方程y=-3.2x+40,則30+n5=-3.2×又因?yàn)閙+n=20,解得m=10,n=10,故選A.【點(diǎn)睛】本題主要考查了回歸直線方程的特征及其應(yīng)用,其中解答中熟記回歸直線方程的特征,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、B【解析】
由題意得出3n+1-12<an+2【詳解】∵an+1-又∵an+2-∵an∈Z,∴于是得到a3上述所有等式全部相加得a2019因此,a2019【點(diǎn)睛】本題考查數(shù)列項(xiàng)的計(jì)算,考查累加法的應(yīng)用,解題的關(guān)鍵就是根據(jù)題中條件構(gòu)造出等式an+2二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等比數(shù)列的性質(zhì)可求.【詳解】設(shè)等比數(shù)列的公比為,則,故.故答案為:【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)(為公比);(3)公比時(shí),則有,其中為常數(shù)且;(4)為等比數(shù)列()且公比為.12、【解析】
先通過拔高法還原三視圖為一個(gè)四棱錐,再根據(jù)圖像找到最長(zhǎng)棱計(jì)算即可?!驹斀狻扛鶕?jù)拔高法還原三視圖,可得斜棱長(zhǎng)最長(zhǎng),所以斜棱長(zhǎng)為?!军c(diǎn)睛】此題考查簡(jiǎn)單三視圖還原,關(guān)鍵點(diǎn)通過拔高法將三視圖還原易求解,屬于較易題目。13、4【解析】
利用余弦定理變形可得,從而求得結(jié)果.【詳解】由余弦定理得:本題正確結(jié)果:【點(diǎn)睛】本題考查余弦定理的應(yīng)用,關(guān)鍵是能夠熟練應(yīng)用的變形,屬于基礎(chǔ)題.14、【解析】
理解方程增廣矩陣的涵義,即可由二元線性方程組,寫出增廣矩陣.【詳解】由題意,方程組的增廣矩陣為其系數(shù)以及常數(shù)項(xiàng)構(gòu)成的矩陣,故方程組的增廣矩陣是.故答案為:【點(diǎn)睛】本題考查了二元一次方程組與增廣矩陣的關(guān)系,需理解增廣矩陣的涵義,屬于基礎(chǔ)題.15、【解析】
令正弦定理化簡(jiǎn)已知等式,得到,代入題設(shè),求得的長(zhǎng),利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因?yàn)?,由正弦定理,可得,因?yàn)榈闹荛L(zhǎng)為5,即,所以,又因?yàn)?,即,所以.【點(diǎn)睛】本題主要考查了正弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)已知角的范圍分別求出,,利用整體代換即可求解.【詳解】,,,所以,,,,所以,=故答案為:【點(diǎn)睛】此題考查三角函數(shù)給值求值的問題,關(guān)鍵在于弄清角的范圍,準(zhǔn)確得出三角函數(shù)值,對(duì)所求的角進(jìn)行合理變形,用已知角表示未知角.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由成等差數(shù)列,且公差為,可得,利用余弦定理可構(gòu)造關(guān)于的方程,解方程求得結(jié)果;(2)設(shè),利用外接圓面積為,求得外接圓的半徑.根據(jù)正弦定理,利用表示出三邊,將周長(zhǎng)表示為關(guān)于的函數(shù),利用三角函數(shù)的值域求解方法求得最大值.【詳解】(1)依次成等差數(shù)列,且公差為,,由余弦定理得:整理得:,解得:或又,則(2)設(shè),外接圓的半徑為,則,解得:由正弦定理可得:可得:,,的周長(zhǎng)又當(dāng),即:時(shí),取得最大值【點(diǎn)睛】本題考查了正弦定理、余弦定理解三角形、三角形周長(zhǎng)最值的求解.求解周長(zhǎng)的最值的關(guān)鍵是能夠?qū)⒅荛L(zhǎng)構(gòu)造為關(guān)于角的函數(shù),從而利用三角函數(shù)的知識(shí)來進(jìn)行求解.考查了推理能力與計(jì)算能力,屬于中檔題.18、(1);(2).【解析】
(1)由正弦和角公式,化簡(jiǎn)三角函數(shù)表達(dá)式,結(jié)合正弦定理即可求得角的大小;(2)在中,設(shè),由余弦定理及正弦定理用表示出.再根據(jù)三角形面積公式表示出,即可結(jié)合正弦函數(shù)的圖像與性質(zhì)求得最大值.【詳解】(1)由題意可得:∴整理得∴∴∴又∴(2)在中,設(shè),由余弦定理得:,∵為正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴為銳角,,,,∵∴當(dāng)時(shí),.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡(jiǎn)變形,正弦定理與余弦定理在解三角形中的應(yīng)用,三角形面積的表示方法,正弦函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,屬于中檔題.19、乙船應(yīng)朝北偏東約的方向沿直線前往處救援.【解析】
根據(jù)題意,求得,利用余弦定理求得的長(zhǎng),在中利用正弦定理求得,根據(jù)題目所給參考數(shù)據(jù)求得乙船行駛方向.【詳解】解:由已知,則,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,則,故乙船應(yīng)朝北偏東約的方向沿直線前往處救援.【點(diǎn)睛】本小題主要考查解三角形在實(shí)際生活中的應(yīng)用,考查正弦定理、余弦定理解三角形,屬于基礎(chǔ)題.20、(1)(2).【解析】
(1)首先計(jì)算,再利用正弦定理計(jì)算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函數(shù)得到高的大小.【詳解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.過點(diǎn)D作于E,則DE為梯形ABCD的高.,,.在直角中,.即梯形ABCD的高為.【點(diǎn)睛】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計(jì)算能力和解決問題的能力.21、(1)詳見解析;(2)詳見解析.【解析】
(1)余弦定理的證明其實(shí)在課本就直接給出過它向量方法的證明,通過,等向量模長(zhǎng)相等就可,當(dāng)然我們還可以通過坐標(biāo)的運(yùn)算完
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 值班的管理制度
- 企業(yè)員工培訓(xùn)與績(jī)效提升制度
- 交通設(shè)施施工安全管理制度
- 2026年傳統(tǒng)文化與藝術(shù)文化遺產(chǎn)專家考試題目
- 2026年投資入門指南金融市場(chǎng)基礎(chǔ)知識(shí)筆試練習(xí)題
- 2026年國(guó)際漢語(yǔ)教師職業(yè)能力測(cè)試練習(xí)題
- 2026年網(wǎng)絡(luò)安全攻防技術(shù)考試題庫(kù)及答案詳解
- 2026年旅游行業(yè)從業(yè)者心理調(diào)適與應(yīng)對(duì)策略題
- 商超節(jié)日堆頭布置合同
- 2026年音樂療法體驗(yàn)協(xié)議
- 2026湖北十堰市丹江口市衛(wèi)生健康局所屬事業(yè)單位選聘14人參考考試題庫(kù)及答案解析
- 手術(shù)區(qū)消毒和鋪巾
- 企業(yè)英文培訓(xùn)課件
- (正式版)DBJ33∕T 1307-2023 《 微型鋼管樁加固技術(shù)規(guī)程》
- 2025年寵物疫苗行業(yè)競(jìng)爭(zhēng)格局與研發(fā)進(jìn)展報(bào)告
- 企業(yè)安全生產(chǎn)責(zé)任培訓(xùn)課件
- 綠化防寒合同范本
- DB45-T 2675-2023 木薯米粉加工技術(shù)規(guī)程
- 板材眼鏡生產(chǎn)工藝
- Unit 3 My weekend plan B Let's talk(教案)人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- 實(shí)習(xí)考勤表(完整版)
評(píng)論
0/150
提交評(píng)論