2022-2023學(xué)年江蘇南通中學(xué)數(shù)學(xué)高二下期末監(jiān)測模擬試題含解析_第1頁
2022-2023學(xué)年江蘇南通中學(xué)數(shù)學(xué)高二下期末監(jiān)測模擬試題含解析_第2頁
2022-2023學(xué)年江蘇南通中學(xué)數(shù)學(xué)高二下期末監(jiān)測模擬試題含解析_第3頁
2022-2023學(xué)年江蘇南通中學(xué)數(shù)學(xué)高二下期末監(jiān)測模擬試題含解析_第4頁
2022-2023學(xué)年江蘇南通中學(xué)數(shù)學(xué)高二下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)袋中有大小相同的80個紅球、20個白球,若從袋中任取10個球,則其中恰有6個紅球的概率為()A. B. C. D.2.已知,若為奇函數(shù),且在上單調(diào)遞增,則實數(shù)的值是()A. B. C. D.3.設(shè)集合,那么集合中滿足條件的元素個數(shù)為()A.60 B.90 C.120 D.1304.已知函數(shù)的最大值為,周期為,給出以下結(jié)論:①的圖象過點;②在上單調(diào)遞減;③的一個對稱中心是;④的一條對稱軸是.其中正確結(jié)論的個數(shù)為()A.1 B.2 C.3 D.45.若α是第一象限角,則sinα+cosα的值與1的大小關(guān)系是()A.sinα+cosα>1 B.sinα+cosα=1 C.sinα+cosα<1 D.不能確定6.若函數(shù)的定義域為,則函數(shù)的定義域為()A. B. C. D.7.若二項式的展開式中二項式系數(shù)的和是64,則展開式中的常數(shù)項為A. B. C.160 D.2408.已知,分別為雙曲線:的左,右焦點,點是右支上一點,若,且,則的離心率為()A. B.4 C.5 D.9.函數(shù)的大致圖象為()A. B.C. D.10.函數(shù)fx=aexx,x∈1,2,且?x1A.-∞,4e2 B.4e11.已知函數(shù)的導(dǎo)函數(shù)為,若,則函數(shù)的圖像可能是()A. B. C. D.12.設(shè)函數(shù)是上的可導(dǎo)函數(shù)其導(dǎo)函數(shù)為,且有,則不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).設(shè)是函數(shù)圖象的一條對稱軸,則的值等于_______.14.二項式的展開式中第10項是常數(shù)項,則常數(shù)項的值是______(用數(shù)字作答).15.若交大附中共有名教職工,那么其中至少有兩人生日在同一天的概率為__________.16.某校高二學(xué)生一次數(shù)學(xué)診斷考試成績(單位:分)服從正態(tài)分布,從中抽取一個同學(xué)的數(shù)學(xué)成績,記該同學(xué)的成績?yōu)槭录浽撏瑢W(xué)的成績?yōu)槭录?,則在事件發(fā)生的條件下事件發(fā)生的概率______.(結(jié)果用分數(shù)表示)附參考數(shù)據(jù):;;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶稱為“微信控”,否則稱其“非微信控”,調(diào)查結(jié)果如下:微信控非微信控合計男性262450女性302050合計5644100(1)根據(jù)以上數(shù)據(jù),能否有的把握認為“微信控”與“性別”有關(guān)?(2)現(xiàn)從采訪的女性用戶中按分層抽樣的方法選出10人,再從中隨機抽取3人贈送禮品,求抽取3人中恰有2人為“微信控”的概率.參考數(shù)據(jù):P()0.100.0500.0250.0100.001k2.7063.8415.0246.63510.828參考公式:,其中.18.(12分)阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻.為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:0項1項2項3項4項5項5項以上理科生(人)110171414104文科生(人)08106321(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關(guān)?比較了解不太了解合計理科生文科生合計(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.(i)求抽取的文科生和理科生的人數(shù);(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.828,.19.(12分)已知極坐標系的極點在直角坐標系的原點處,極軸與軸正半軸重合,直線的參數(shù)方程為:(為參數(shù),),曲線的極坐標方程為:.(1)寫出曲線的直角坐標方程;(2)設(shè)直線與曲線相交于兩點,直線過定點,若,求直線的斜率.20.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大?。虎谠诶釶C上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.21.(12分)某高速公路收費站入口處的安全標識墩如圖1所示.墩的上半部分是正四棱錐P﹣EFGH,下半部分是長方體ABCD﹣EFGH.圖2、圖3分別是該標識墩的正視圖和俯視圖.(1)請畫出該安全標識墩的側(cè)視圖;(2)求該安全標識墩的體積.22.(10分)《福建省高考改革試點方案》規(guī)定:從2018年秋季高中入學(xué)的新生開始,不分文理科;2021年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成,將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級,參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、18%、22%、22%、18%、7%、3%,選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數(shù)區(qū)間,得到考生的等級成績,某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六門選考科目進行測試,其中化學(xué)考試原始成績基本服從正態(tài)分布.(1)求化學(xué)原始成績在區(qū)間(57,96)的人數(shù);(2)以各等級人數(shù)所占比例作為各分數(shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間[71,90]的人數(shù),求事件的概率(附:若隨機變量,,)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】本題是一個古典概型,∵袋中有80個紅球20個白球,若從袋中任取10個球共有種不同取法,而滿足條件的事件是其中恰有6個紅球,共有種取法,由古典概型公式得到P=,本題選擇B選項.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.2、B【解析】

先根據(jù)奇函數(shù)性質(zhì)確定取法,再根據(jù)單調(diào)性進行取舍,進而確定選項.【詳解】因為為奇函數(shù),所以因為,所以因此選B.【點睛】本題考查冪函數(shù)奇偶性與單調(diào)性,考查基本判斷選擇能力.3、D【解析】

從,且入手,可能取,分3種情況討論種的個數(shù),再求5個元素的排列個數(shù),相加即可得到答案.【詳解】因為,且,所以可能取,當(dāng)時,中有1個1或,4四個所以元素個數(shù)為;當(dāng)時,中有2個1,3個0,或1個1,1個,3個0,或2個,3個0,所以元素個數(shù)為,當(dāng)時,中有3個1,2個0,或2個1,1個,2個0,或2個,1個1,2個0,或3個,2個0,元素個數(shù)為,故滿足條件的元素個數(shù)為,故選:D【點睛】本題考查了分類討論思想,考查了求排列數(shù),對的值和對中的個數(shù)進行分類討論是解題關(guān)鍵,屬于難題.4、C【解析】

運用三角函數(shù)的輔助角公式和周期公式,可得a,,再由正弦函數(shù)的單調(diào)性和對稱性,計算可得正確結(jié)論的個數(shù).【詳解】函數(shù)的最大值為,周期為,

可得,可得,可得,

則,

則,正確;

當(dāng),可得,

可得在上單調(diào)遞減,正確;

由,則錯誤;

由,

可得正確.

其中正確結(jié)論的個數(shù)為1.

故選:C.

【點睛】本題考查三角函數(shù)的圖象和性質(zhì),注意運用輔助角公式和周期公式,考查正弦函數(shù)的單調(diào)性和對稱性,考查運算能力,屬于中檔題.5、A【解析】試題分析:設(shè)角α的終邊為OP,P是角α的終邊與單位圓的交點,PM垂直于x軸,M為垂足,則由任意角的三角函數(shù)的定義,可得sinα=MP=|MP|,cosα=OM=|OM|,再由三角形任意兩邊之和大于第三邊,得出結(jié)論.解:如圖所示:設(shè)角α的終邊為OP,P是角α的終邊與單位圓的交點,PM垂直于x軸,M為垂足,則由任意角的三角函數(shù)的定義,可得sinα=MP=|MP|,cosα=OM=|OM|.△OPM中,∵|MP|+|OM|>|OP|=1,∴sinα+cosα>1,故選A.考點:三角函數(shù)線.6、B【解析】

由抽象函數(shù)的定義域,對數(shù)的真數(shù)大于零,分母不為零,列出不等式,從而求出的定義域?!驹斀狻坑深}可得:,解得且,所以函數(shù)的定義域為;故答案選B【點睛】本題主要抽象函數(shù)與初等函數(shù)的定義域,屬于基礎(chǔ)題。7、D【解析】

由二項式定義得到二項展開式的二項式系數(shù)和為,由此得到,然后求通項,化簡得到常數(shù)項,即可得到答案.【詳解】由已知得到,所以,所以展開式的通項為,令,得到,所以展開式的常數(shù)項為,故選D.【點睛】本題主要考查了二項展開式的二項式系數(shù)以及特征項的求法,其中熟記二項展開式的系數(shù)問題和二項展開式的通項是解答此類問題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解析】

在中,求出,,然后利用雙曲線的定義列式求解.【詳解】在中,因為,所以,,,則由雙曲線的定義可得所以離心率,故選C.【點睛】本題考查雙曲線的定義和離心率,解題的關(guān)鍵是求出,,屬于一般題.9、D【解析】

判斷函數(shù)的奇偶性和對稱性,利用的符號進行排除即可.【詳解】,函數(shù)是奇函數(shù),圖象關(guān)于原點對稱,排除,排除,故選:.【點睛】本題考查函數(shù)的圖象的判斷與應(yīng)用,考查函數(shù)的零點以及特殊值的計算,是中檔題;已知函數(shù)解析式,選擇其正確圖象是高考中的高頻考點,主要采用的是排除法,最常見的排出方式有根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、周期性等性質(zhì),同時還有在特殊點處所對應(yīng)的函數(shù)值或其符號,其中包括等.10、A【解析】

構(gòu)造函數(shù)Fx=fx-x,根據(jù)函數(shù)的單調(diào)性得到F'x≤0在1,2【詳解】不妨設(shè)x1<x2,令Fx=fx-x,則Fx在1,2F'x當(dāng)x=1時,a∈R,當(dāng)x∈1,2時,a≤x2所以gx在1,2單調(diào)遞減,是gxmin【點睛】本題考查了函數(shù)的單調(diào)性,恒成立問題,構(gòu)造函數(shù)Fx=f11、D【解析】

根據(jù)導(dǎo)數(shù)的幾何意義和,確定函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,即可得出結(jié)論.【詳解】函數(shù)的導(dǎo)函數(shù)為,,∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,故選:D.【點睛】本題考查函數(shù)的圖象與其導(dǎo)函數(shù)的關(guān)系,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.12、C【解析】分析:先求,所以單調(diào)遞減。再解不等式。詳解:因為,所以,設(shè)故單調(diào)遞減,那么,,所以的解集,也即是的解集,由單調(diào)遞減,可得,所以,故選C。點睛:已知抽象函數(shù)的性質(zhì)解不等式的基本解法有兩種:(1)構(gòu)造滿足題目條件的特殊函數(shù),(2)還原抽象函數(shù),利用抽象函數(shù)的性質(zhì)求解。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先將f(x)的解析式進行降冪,再由x=x0是函數(shù)y=f(x)圖象的一條對稱軸可得到x0的關(guān)系式,將x0的關(guān)系式代入即可得到答案.【詳解】由題設(shè)知.

因為是函數(shù)y=f(x)圖象的一條對稱軸,所以,即(k∈Z).

所以.

故答案為.【點睛】本題主要考查三角函數(shù)的二倍角公式和對稱軸問題.屬中檔題.14、【解析】

利用二項展開式的通項公式求出展開式的第10項,令x的指數(shù)為0,求出n的值,代入即可求解.【詳解】∵二項式的展開式中第10項是常數(shù)項,∴展開式的第10項為,∴n-9-3=0,解得n=12,∴常數(shù)值為故答案為:.【點睛】本題考查二項式系數(shù)的性質(zhì),考查對二項式通項公式的運用,屬于基礎(chǔ)題,15、1【解析】分析:根據(jù)每年有天,可判斷名教職工,中至少有兩人生日在同一天為必然事件,從而可得結(jié)果.詳解:假設(shè)每一天只有一個人生日,則還有人,所以至少兩個人同日生為必然事件,所以至少有兩人生日在同一天的概率為,故答案為.點睛:本題考查必然事件的定義以及必然事件的概率,屬于簡單題.16、【解析】

計算出和,然后利用條件概率公式可得出的值.【詳解】由題意可知,,事件為,,,所以,,,由條件概率公式得,故答案為:.【點睛】本題考查條件概率的計算,同時也考查了正態(tài)分布原則計算概率,解題時要將相應(yīng)的事件轉(zhuǎn)化為正態(tài)分布事件,充分利用正態(tài)密度曲線的對稱性計算,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)沒有;(2)【解析】

(1)根據(jù)列聯(lián)表及公式計算出,與比較大小即可得出答案;(2)分成抽樣可得“微信控”有6人,“非微信控”有4人,由古典概型的概率公式可得所求概率.【詳解】解:(1)由題意得由于,故沒有的把握認為“微信控”與“性別”有關(guān).(2)在所選出的10人中“微信控”有6人,“非微信控”有4人.記事件A表示“抽取3人中恰有2人為“微信控”,則,所以,抽取3人中恰有2人為“微信控”的概率.【點睛】本題考查獨立性檢驗統(tǒng)計案例,考查古典概型的概率,是基礎(chǔ)題.18、(1)見解析;(2)(i)文科生3人,理科生7人(ii)見解析【解析】

(1)寫出列聯(lián)表后可計算,根據(jù)預(yù)測值表可得沒有的把握認為,了解阿基米德與選擇文理科有關(guān).(2)(i)文科生與理科生的比為,據(jù)此可計算出文科生和理科生的人數(shù).(ii)利用超幾何分布可計算的分布列及其數(shù)學(xué)期望.【詳解】解:(1)依題意填寫列聯(lián)表如下:比較了解不太了解合計理科生422870文科生121830合計5446100計算,沒有的把握認為,了解阿基米德與選擇文理科有關(guān).(2)(i)抽取的文科生人數(shù)是(人),理科生人數(shù)是(人).(ii)的可能取值為0,1,2,3,則,,,.其分布列為0123所以.【點睛】本題考查獨立性檢驗、分層抽樣及超幾何分布,注意在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等).19、(1);(2).【解析】

(1)由,得,由此能求出曲線C的直角坐標方程;(2)把代入,整理得,由,得,能求出直線l的斜率.【詳解】(1)曲線C的極坐標方程為,所以.即,即.(2)把直線的參數(shù)方程帶入得設(shè)此方程兩根為,易知,而定點M在圓C外,所以,,,,可得,∴,所以直線的斜率為-1.【點睛】本題考查曲線的直角坐標方程的求法,考查直線的斜率的求法,考查極坐標方程、直角坐標方程的互化等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.20、Ⅰ詳見解析;Ⅱ①,②或.【解析】

Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應(yīng)點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大小;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當(dāng)沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設(shè)平面PBC的法向量為y,,則,取,得0,,設(shè)平面PCD的法向量b,,則,取,得1,,設(shè)二面角的大小為,可知為鈍角,則,.二面角的大小為.設(shè)AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.21、(1)見解析(2)64000(cm3)【解析】

(1)由于墩的上半部分是正四棱錐P﹣EFGH,下半部分是長方體ABCD﹣EF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論