陜西省山陽縣達(dá)標(biāo)名校2023年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
陜西省山陽縣達(dá)標(biāo)名校2023年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
陜西省山陽縣達(dá)標(biāo)名校2023年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
陜西省山陽縣達(dá)標(biāo)名校2023年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
陜西省山陽縣達(dá)標(biāo)名校2023年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體2.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是()A.10 B.12 C.20 D.243.如圖,在△ABC中,點(diǎn)D是AB邊上的一點(diǎn),若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.44.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.5.下列各式屬于最簡二次根式的有()A. B. C. D.6.若代數(shù)式在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是()A. B. C. D.7.下列代數(shù)運(yùn)算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x58.的倒數(shù)是()A.﹣ B.2 C.﹣2 D.9.以下各圖中,能確定的是()A. B. C. D.10.如圖,在射線OA,OB上分別截取OA1=OB1,連接A1B1,在B1A1,B1B上分別截取B1A2=B1B2,連接A2B2,…按此規(guī)律作下去,若∠A1B1O=α,則∠A10B10O=()A. B. C. D.11.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.12.已知一個(gè)布袋里裝有2個(gè)紅球,3個(gè)白球和a個(gè)黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個(gè)球,是紅球的概率為,則a等于()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,點(diǎn)A(m,2),B(5,n)在函數(shù)(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個(gè)單位長度得到一條新的曲線,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A′、B′.圖中陰影部分的面積為8,則k的值為.14.如圖,在平面直角坐標(biāo)系中,以點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內(nèi)交于點(diǎn)p(a,b),則a與b的數(shù)量關(guān)系是________.15.如圖,平行于x軸的直線AC分別交拋物線(x≥0)與(x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則=_.16.太極揉推器是一種常見的健身器材.基本結(jié)構(gòu)包括支架和轉(zhuǎn)盤,數(shù)學(xué)興趣小組的同學(xué)對(duì)某太極揉推器的部分?jǐn)?shù)據(jù)進(jìn)行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點(diǎn)C到立柱頂點(diǎn)B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉(zhuǎn)盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點(diǎn),且CD⊥FG,CE⊥MN,則兩個(gè)轉(zhuǎn)盤的最低點(diǎn)F,N距離地面的高度差為_____cm.(結(jié)果保留根號(hào))17.分解因式:x2y﹣y=_____.18.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)計(jì)算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式組,并把它的解集在數(shù)軸上表示出來.20.(6分)如圖,已知:△ABC中,AB=AC,M是BC的中點(diǎn),D、E分別是AB、AC邊上的點(diǎn),且BD=CE.求證:MD=ME.21.(6分)如圖,△ABC中,點(diǎn)D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的長.22.(8分)列方程解應(yīng)用題八年級(jí)學(xué)生去距學(xué)校10km的博物館參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度.23.(8分)圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)24.(10分)解方程:xx+1+225.(10分)如圖,在梯形中,,,,,點(diǎn)為邊上一動(dòng)點(diǎn),作⊥,垂足在邊上,以點(diǎn)為圓心,為半徑畫圓,交射線于點(diǎn).(1)當(dāng)圓過點(diǎn)時(shí),求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時(shí),以點(diǎn)為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點(diǎn),試通過計(jì)算說明線段和的比值為定值,并求出次定值.26.(12分)一位運(yùn)動(dòng)員推鉛球,鉛球運(yùn)行時(shí)離地面的高度(米)是關(guān)于運(yùn)行時(shí)間(秒)的二次函數(shù).已知鉛球剛出手時(shí)離地面的高度為米;鉛球出手后,經(jīng)過4秒到達(dá)離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標(biāo)系.(Ⅰ)為了求這個(gè)二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo).根據(jù)題意可知,該二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo)分別是____________________________;(Ⅱ)求這個(gè)二次函數(shù)的解析式和自變量的取值范圍.27.(12分)如圖,拋物線y=﹣+bx+c交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3),點(diǎn)D是x軸上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D旋轉(zhuǎn)得到DE,過點(diǎn)E作直線l⊥x軸,垂足為H,過點(diǎn)C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到,求線段DF的長;(3)若線段DE是CD繞點(diǎn)D旋轉(zhuǎn)90°得到,且點(diǎn)E恰好在拋物線上,請(qǐng)求出點(diǎn)E的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

本題中,圓柱的俯視圖是個(gè)圓,可以堵住圓形空洞,它的正視圖和左視圖是個(gè)矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識(shí)來解答.圓柱的俯視圖是一個(gè)圓,可以堵住圓形空洞,而它的正視圖以及側(cè)視圖都為一個(gè)矩形,可以堵住方形的空洞,故圓柱是最佳選項(xiàng).故選D.【點(diǎn)睛】此題考查立體圖形,本題將立體圖形的三視圖運(yùn)用到了實(shí)際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實(shí)并不難.2、B【解析】

根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,而從C向A運(yùn)動(dòng)時(shí),BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,

由圖象可知:點(diǎn)P從B向C運(yùn)動(dòng)時(shí),BP的最大值為5,即BC=5,

由于M是曲線部分的最低點(diǎn),

∴此時(shí)BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于圖象的曲線部分是軸對(duì)稱圖形,

∴PA=3,

∴AC=6,

∴△ABC的面積為:×4×6=12.故選:B.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長度,本題屬于中等題型.3、C【解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點(diǎn):相似三角形的判定與性質(zhì).4、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點(diǎn):簡單組合體的三視圖.5、B【解析】

先根據(jù)二次根式的性質(zhì)化簡,再根據(jù)最簡二次根式的定義判斷即可.【詳解】A選項(xiàng):,故不是最簡二次根式,故A選項(xiàng)錯(cuò)誤;B選項(xiàng):是最簡二次根式,故B選項(xiàng)正確;C選項(xiàng):,故不是最簡二次根式,故本選項(xiàng)錯(cuò)誤;D選項(xiàng):,故不是最簡二次根式,故D選項(xiàng)錯(cuò)誤;

故選:B.【點(diǎn)睛】考查了對(duì)最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關(guān)鍵.6、D【解析】試題解析:要使分式有意義,則1-x≠0,解得:x≠1.故選D.7、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進(jìn)行逐一計(jì)算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯(cuò)誤;B.(x3)2=x6,故B錯(cuò)誤;C.(2x)2=4x2,故C錯(cuò)誤.D.x3?x2=x5,故D正確.故本題選D.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.8、B【解析】

根據(jù)乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)解答.【詳解】解:∵×1=1∴的倒數(shù)是1.故選B.【點(diǎn)睛】本題考查了倒數(shù)的定義,是基礎(chǔ)題,熟記概念是解題的關(guān)鍵.9、C【解析】

逐一對(duì)選項(xiàng)進(jìn)行分析即可得出答案.【詳解】A中,利用三角形外角的性質(zhì)可知,故該選項(xiàng)錯(cuò)誤;B中,不能確定的大小關(guān)系,故該選項(xiàng)錯(cuò)誤;C中,因?yàn)橥∷鶎?duì)的圓周角相等,所以,故該選項(xiàng)正確;D中,兩直線不平行,所以,故該選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及圓周角定理的推論,掌握?qǐng)A周角定理的推論是解題的關(guān)鍵.10、B【解析】

根據(jù)等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結(jié)論.【詳解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故選B.【點(diǎn)睛】本題考查了等腰三角形兩底角相等的性質(zhì),圖形的變化規(guī)律,依次求出相鄰的兩個(gè)角的差,得到分母成2的指數(shù)次冪變化,分子不變的規(guī)律是解題的關(guān)鍵.11、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點(diǎn)在y軸的負(fù)半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過第一、三、四象限;故選:B.12、A【解析】

此題考查了概率公式的應(yīng)用.注意用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗(yàn),a=1是原分式方程的解,故本題選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2.【解析】試題分析:∵將該函數(shù)圖象向上平移2個(gè)單位長度得到一條新的曲線,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點(diǎn):2.反比例函數(shù)系數(shù)k的幾何意義;2.平移的性質(zhì);3.綜合題.14、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點(diǎn)的橫縱坐標(biāo)互為相反數(shù),故a+b=1.考點(diǎn):1角平分線;2平面直角坐標(biāo)系.15、5-【解析】試題分析:本題我們可以假設(shè)一個(gè)點(diǎn)的坐標(biāo),然后進(jìn)行求解.設(shè)點(diǎn)C的坐標(biāo)為(1,),則點(diǎn)B的坐標(biāo)為(,),點(diǎn)D的坐標(biāo)為(1,1),點(diǎn)E的坐標(biāo)為(,1),則AB=,DE=-1,則=5-.考點(diǎn):二次函數(shù)的性質(zhì)16、10【解析】

作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個(gè)轉(zhuǎn)盤的最低點(diǎn)F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點(diǎn)睛】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.17、y(x+1)(x﹣1)【解析】

觀察原式x2y﹣y,找到公因式y(tǒng)后,提出公因式后發(fā)現(xiàn)x2-1符合平方差公式,利用平方差公式繼續(xù)分解可得.【詳解】解:x2y﹣y=y(tǒng)(x2﹣1)=y(tǒng)(x+1)(x﹣1).故答案為:y(x+1)(x﹣1).【點(diǎn)睛】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.18、【解析】

要求絲線的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.

∵圓柱底面的周長為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長最小為2AC=4dm.

故答案為:4dm【點(diǎn)睛】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)5;(2)﹣2≤x<﹣.【解析】

(1)原式第一項(xiàng)利用乘方的意義計(jì)算,第二項(xiàng)利用特殊角的三角函數(shù)值以及二次根式的乘法計(jì)算,第三項(xiàng)利用負(fù)整數(shù)指數(shù)冪法則計(jì)算,最后一項(xiàng)利用零指數(shù)冪法則計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則計(jì)算即可得到結(jié)果;(2)先求出兩個(gè)不等式的解集,再找出解集的公共部分即可.【詳解】(1)原式=5;(2)解不等式①得,x≥﹣2,解不等式②得,所以不等式組的解集是用數(shù)軸表示為:【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪,零指數(shù)冪,不等式組的解法,是綜合題,但難度不大,計(jì)算時(shí)要注意運(yùn)算符號(hào)的處理以及解集公共部分的確定.20、證明見解析.【解析】試題分析:根據(jù)等腰三角形的性質(zhì)可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題.試題解析:證明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M(jìn)是BC的中點(diǎn),∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考點(diǎn):1.等腰三角形的性質(zhì);2.全等三角形的判定與性質(zhì).21、.【解析】試題分析:可證明△ACD∽△ABC,則,即得出AC2=AD?AB,從而得出AC的長.試題解析:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∵AD=2,AB=6,∴.∴.∴AC=.考點(diǎn):相似三角形的判定與性質(zhì).22、15【解析】試題分析:設(shè)騎車學(xué)生的速度為,利用時(shí)間關(guān)系列方程解應(yīng)用題,一定要檢驗(yàn).試題解析:解:設(shè)騎車學(xué)生的速度為,由題意得,解得.經(jīng)檢驗(yàn)是原方程的解.答:騎車學(xué)生的速度為15.23、1.4米.【解析】

過點(diǎn)B作BE⊥AD于點(diǎn)E,過點(diǎn)C作CF⊥AD于點(diǎn)F,延長FC到點(diǎn)M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長度,進(jìn)而可得出EF的長度,再在Rt△MEF中利用勾股定理即可求出EM的長,此題得解.【詳解】過點(diǎn)B作BE⊥AD于點(diǎn)E,過點(diǎn)C作CF⊥AD于點(diǎn)F,延長FC到點(diǎn)M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用、勾股定理以及平行四邊形的判定與性質(zhì),正確添加輔助線,構(gòu)造直角三角形,利用勾股定理求出BC的長度是解題的關(guān)鍵.24、-3【解析】試題分析:解得x=-3經(jīng)檢驗(yàn):x=-3是原方程的根.∴原方程的根是x=-3考點(diǎn):解一元一次方程點(diǎn)評(píng):在中考中比較常見,在各種題型中均有出現(xiàn),一般難度不大,要熟練掌握.25、(1)x=1(2)(1)【解析】

(1)作AM⊥BC、連接AP,由等腰梯形性質(zhì)知BM=4、AM=1,據(jù)此知tanB=tanC=,從而可設(shè)PH=1k,則CH=4k、PC=5k,再表示出PA的長,根據(jù)PA=PH建立關(guān)于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9?8k,由△ABE∽△CEH得,據(jù)此求得k的值,從而得出圓P的半徑,再根據(jù)兩圓間的位置關(guān)系求解可得;(1)在圓P上取點(diǎn)F關(guān)于EH的對(duì)稱點(diǎn)G,連接EG,作PQ⊥EG、HN⊥BC,先證△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,據(jù)此得出NC=k、HN=k及PN=PC?NC=k,繼而表示出EF、EH的長,從而出答案.【詳解】(1)作AM⊥BC于點(diǎn)M,連接AP,如圖1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴設(shè)PH=1k,則CH=4k、PC=5k,∵BC=9,∴PM=BC?BM?PC=5?5k,∴AP=AM+PM=9+(5?5k),∵PA=PH,∴9+(5?5k)=9k,解得:k=1或k=,當(dāng)k=時(shí),CP=5k=>9,舍去;∴k=1,則圓P的半徑為1.(2)如圖2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC?PE?PC=9?8k,∵△ABE∽△CEH,∴,即,解得:k=,則PH=,即圓P的半徑為,∵圓B與圓P相交,且BE=9?8k=,∴<r<;(1)在圓P上取點(diǎn)F關(guān)于EH的對(duì)稱點(diǎn)G,連接EG,作PQ⊥EG于G,HN⊥BC于N,則EG=EF、∠1=∠1、EQ=QG、EF=EG=2EQ,∴∠GEP=2∠1,∵PE=PH,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ≌△PHN,∴EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,∴sinC=、cosC=,∴NC=k、HN=k,∴PN=PC?NC=k,∴EF=EG=2EQ=2PN=k,EH=,∴,故線段EH和EF的比值為定值.【點(diǎn)睛】此題考查全等三角形的性質(zhì),相似三角形的性質(zhì),解直角三角形,勾股定理,解題關(guān)鍵在于作輔助線.26、(0,),(4,3)【解析】試題分析:(Ⅰ)根據(jù)“剛出手時(shí)離地面高度為米、經(jīng)過4秒到達(dá)離地面3米的高度和經(jīng)過1秒落到地面”可得三點(diǎn)坐標(biāo);(Ⅱ)利用待定系數(shù)法求解可得.試題解析:解:(Ⅰ)由題意知,該二次函數(shù)圖象上的三個(gè)點(diǎn)的坐標(biāo)分別是(0,)、(4,3)、(1,0).故答案為:(0,)、(4,3)、(1,0).(Ⅱ)設(shè)這個(gè)二次函數(shù)的解析式為y=ax2+bx+c,將(Ⅰ)三點(diǎn)坐標(biāo)代入,得:,解得:,所以所求拋物線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論