【疑難突破】二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用_第1頁
【疑難突破】二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用_第2頁
【疑難突破】二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用_第3頁
【疑難突破】二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用_第4頁
【疑難突破】二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用講解1二項(xiàng)式系數(shù)的有關(guān)性質(zhì)的形成過程體現(xiàn)了觀察——猜想——證明——?dú)w納的數(shù)學(xué)方法,并且在歸納證明的過程中應(yīng)用了函數(shù)思想、方程思想等數(shù)學(xué)思想,大致對(duì)應(yīng)如下:對(duì)稱性應(yīng)用了組合數(shù)的性質(zhì)增減性與最大值應(yīng)用了組合數(shù)公式、函數(shù)思想等系數(shù)和應(yīng)用了構(gòu)造思想、整體思想二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用講解2求二項(xiàng)式系數(shù)最大的項(xiàng),可根據(jù)二項(xiàng)式系數(shù)的性質(zhì):當(dāng)n為奇數(shù)時(shí),中間兩項(xiàng)的二項(xiàng)式系數(shù)最大;當(dāng)n為偶數(shù)時(shí),中間一項(xiàng)的二項(xiàng)式系數(shù)最大.二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用講解3求二項(xiàng)展開式中系數(shù)的最值問題有兩種思路:思路一,二項(xiàng)展開式中的系數(shù)是關(guān)于正整數(shù)n的式子,可以看成關(guān)于n的函數(shù),利用判斷函數(shù)單調(diào)性的方法判斷系數(shù)的增減性,從而求出系數(shù)的最值;思路二,在系數(shù)均為正值的前提下,求它們的最大值只需比較相鄰兩個(gè)系數(shù)的大小,根據(jù)其展開式的通項(xiàng)正確地列出不等式(組)即可.二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用講解4根據(jù)二項(xiàng)式系數(shù)的性質(zhì)求參數(shù)的關(guān)鍵是正確列出與參數(shù)有關(guān)的關(guān)系式,然后解此關(guān)系式即可.必要時(shí),需檢驗(yàn)所求參數(shù)是否符合題目要求.二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用例在(3x-2y)20的展開式中,求:(1)二項(xiàng)式系數(shù)最大的項(xiàng);(2)系數(shù)絕對(duì)值最大的項(xiàng);(3)系數(shù)最大的項(xiàng).解析:(1)二項(xiàng)式系數(shù)最大的項(xiàng)是第11項(xiàng),T11=

×310×(-2)10x10y10=

×610x10y10.(2)設(shè)系數(shù)絕對(duì)值最大的項(xiàng)是第r+1(0≤r≤20,r∈N)項(xiàng),于是化簡(jiǎn)得解得

≤r≤

(r∈N),所以r=8,即T9=

×312×28x12y8是系數(shù)絕對(duì)值最大的項(xiàng).二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用例在(3x-2y)20的展開式中,求:(1)二項(xiàng)式系數(shù)最大的項(xiàng);(2)系數(shù)絕對(duì)值最大的項(xiàng);(3)系數(shù)最大的項(xiàng).解析:(3)由于系數(shù)為正的項(xiàng)為y的偶次方項(xiàng),因此可設(shè)第2k-1(1≤k≤11,k∈N)項(xiàng)系數(shù)最大,于是所以解得k=5,即第2×5-1=9項(xiàng)系數(shù)最大,T9=

×312×28×x12y8.二項(xiàng)式系數(shù)的性質(zhì)及其應(yīng)用方法總結(jié)求二項(xiàng)式系數(shù)最大的項(xiàng),利用性質(zhì)知展開式的中間項(xiàng)(或中間兩項(xiàng))是二項(xiàng)式系數(shù)最大的項(xiàng).求展開式中系數(shù)最大的項(xiàng),當(dāng)展開式中有些項(xiàng)的系數(shù)是負(fù)數(shù),有些項(xiàng)的系數(shù)是正數(shù)時(shí),只

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論