2022-2023學(xué)年漢中市重點中學(xué)初三下學(xué)期9月摸底數(shù)學(xué)試題含解析_第1頁
2022-2023學(xué)年漢中市重點中學(xué)初三下學(xué)期9月摸底數(shù)學(xué)試題含解析_第2頁
2022-2023學(xué)年漢中市重點中學(xué)初三下學(xué)期9月摸底數(shù)學(xué)試題含解析_第3頁
2022-2023學(xué)年漢中市重點中學(xué)初三下學(xué)期9月摸底數(shù)學(xué)試題含解析_第4頁
2022-2023學(xué)年漢中市重點中學(xué)初三下學(xué)期9月摸底數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年漢中市重點中學(xué)初三下學(xué)期9月摸底數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一個幾何體的三視圖如圖所示,那么這個幾何體是()A. B. C. D.2.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.3.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.4.如圖所示是由幾個完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個幾何體的體積為()A.2 B.3 C.4 D.55.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°6.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限7.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.如圖,在中,.點是的中點,連結(jié),過點作,分別交于點,與過點且垂直于的直線相交于點,連結(jié).給出以下四個結(jié)論:①;②點是的中點;③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.19.圖1~圖4是四個基本作圖的痕跡,關(guān)于四條弧①、②、③、④有四種說法:?、偈且設(shè)為圓心,任意長為半徑所畫的??;?、谑且訮為圓心,任意長為半徑所畫的??;?、凼且訟為圓心,任意長為半徑所畫的??;?、苁且訮為圓心,任意長為半徑所畫的??;其中正確說法的個數(shù)為()A.4 B.3 C.2 D.110.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.12.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.13.已知邊長為5的菱形中,對角線長為6,點在對角線上且,則的長為__________.14.如圖是一位同學(xué)設(shè)計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.15.計算:()﹣1﹣(5﹣π)0=_____.16.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學(xué)記數(shù)法表示為_____.三、解答題(共8題,共72分)17.(8分)為了弘揚學(xué)生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質(zhì)和精神風(fēng)貌,豐富學(xué)生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強兩位同學(xué),但學(xué)校規(guī)定每班只有1個名額,經(jīng)過老師與同學(xué)們商量,用所學(xué)的概率知識設(shè)計摸球游戲決定誰去,設(shè)計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復(fù)以上動作,直到分出勝負為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.18.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.19.(8分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當(dāng)半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設(shè)另一個公共點是C.①直接寫出m的取值范圍是.②當(dāng)BC=2時,求△AOB與半圓D的公共部分的面積.當(dāng)△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.20.(8分)如圖所示,某校九年級(3)班的一個學(xué)習(xí)小組進行測量小山高度的實踐活動.部分同學(xué)在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學(xué)在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結(jié)果都不取近似值)21.(8分)如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)22.(10分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標(biāo);(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點D的坐標(biāo).23.(12分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點A的坐標(biāo)為(1,0).①求拋物線l的表達式,并直接寫出當(dāng)x為何值時,函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數(shù)?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標(biāo);(2)當(dāng)2<x<3時,若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.24.當(dāng)前,“精準(zhǔn)扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學(xué)七年級共有四個班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.求七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】由主視圖和左視圖可得此幾何體為柱體,根據(jù)俯視圖為三角形可得此幾何體為三棱柱.故選C.2、C【解析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.3、D【解析】

連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.4、C【解析】

根據(jù)左視圖發(fā)現(xiàn)最右上角共有2個小立方體,綜合以上,可以發(fā)現(xiàn)一共有4個立方體,主視圖和左視圖都是上下兩行,所以這個幾何體共由上下兩層小正方體組成,俯視圖有3個小正方形,所以下面一層共有3個小正方體,結(jié)合主視圖和左視圖的形狀可知上面一層只有最左邊有個小正方體,故這個幾何體由4個小正方體組成,其體積是4.故選C.【點睛】錯因分析

容易題,失分原因:未掌握通過三視圖還原幾何體的方法.5、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).6、A【解析】

由拋物線的頂點坐標(biāo)在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關(guān)鍵.7、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時,方程有兩個不相等的實數(shù)根;②當(dāng)△=0時,方程有兩個相等的實數(shù)根;③當(dāng)△<0時,方程無實數(shù)根.8、C【解析】

用特殊值法,設(shè)出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關(guān)線段的長;易證△GAB≌△DBC,求出相關(guān)線段的長;再證AG∥BC,求出相關(guān)線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設(shè)AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關(guān)性質(zhì),中等難度,注意合理的運用特殊值法是解題關(guān)鍵.9、C【解析】

根據(jù)基本作圖的方法即可得到結(jié)論.【詳解】解:(1)?、偈且設(shè)為圓心,任意長為半徑所畫的弧,正確;(2)?、谑且訮為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)?、凼且訟為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)弧④是以P為圓心,任意長為半徑所畫的弧,正確.故選C.【點睛】此題主要考查了基本作圖,解決問題的關(guān)鍵是掌握基本作圖的方法.10、C【解析】

連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

設(shè)⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設(shè)⊙O半徑為r,則OA=OD=r,OC=r-2,

∵OD⊥AB,

∴∠ACO=90°,

AC=BC=AB=4,

在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,

r=5,

∴AE=2r=10,

∵AE為⊙O的直徑,

∴∠ABE=90°,

由勾股定理得:BE=6,

在Rt△ECB中,EC=.故答案是:.【點睛】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.12、【解析】根據(jù)弧長公式可得:=,故答案為.13、3或1【解析】

菱形ABCD中,邊長為1,對角線AC長為6,由菱形的性質(zhì)及勾股定理可得AC⊥BD,BO=4,分當(dāng)點E在對角線交點左側(cè)時(如圖1)和當(dāng)點E在對角線交點左側(cè)時(如圖2)兩種情況求BE得長即可.【詳解】解:當(dāng)點E在對角線交點左側(cè)時,如圖1所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當(dāng)點E在對角線交點左側(cè)時,如圖2所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.【點睛】本題主要考查了菱形的性質(zhì),解決問題時要注意分當(dāng)點E在對角線交點左側(cè)時和當(dāng)點E在對角線交點左側(cè)時兩種情況求BE得長.14、10【解析】

首先證明△ABP∽△CDP,可得=,再代入相應(yīng)數(shù)據(jù)可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用.15、1【解析】

分別根據(jù)負整數(shù)指數(shù)冪,0指數(shù)冪的化簡計算出各數(shù),即可解題【詳解】解:原式=2﹣1=1,故答案為1.【點睛】此題考查負整數(shù)指數(shù)冪,0指數(shù)冪的化簡,難度不大16、【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學(xué)記數(shù)法表示為,故答案為:.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1);(2)不公平,理由見解析.【解析】

(1)畫樹狀圖列出所有等可能結(jié)果數(shù),找到摸出一個黃球和一個白球的結(jié)果數(shù),根據(jù)概率公式可得答案;(2)結(jié)合(1)種樹狀圖根據(jù)概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結(jié)果,其中一次性摸出一個黃球和一個白球的有11種結(jié)果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.18、(1)見解析;(1)⊙O半徑為【解析】

(1)連接OA,利用已知首先得出OA∥DE,進而證明OA⊥AE就能得到AE是⊙O的切線;(1)通過證明△BAD∽△AED,再利用對應(yīng)邊成比例關(guān)系從而求出⊙O半徑的長.【詳解】解:(1)連接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵點A在⊙O上,∴AE是⊙O的切線.(1)∵BD是⊙O的直徑,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根據(jù)勾股定理,得BD=.∴⊙O半徑為.19、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當(dāng)O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當(dāng)OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答如圖2,當(dāng)OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答【詳解】(1)當(dāng)半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當(dāng)O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當(dāng)BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當(dāng)OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當(dāng)OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【點睛】此題此題考勾股定理,切線的性質(zhì),等邊三角形的判定和性質(zhì),三角形的內(nèi)心和外心,解題關(guān)鍵在于作輔助線20、米【解析】

解:如圖,過點D作DE⊥AC于點E,作DF⊥BC于點F,則有DE∥FC,DF∥EC.∵∠DEC=90°,∴四邊形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=,∴DE=180?sin30°=180×=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,∴BF=180?sin60°=180×(米).∴BC=BF+FC=90+90=90(+1)(米).答:小山的高度BC為90(+1)米.21、這棵樹CD的高度為8.7米【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.試題解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:這棵樹CD的高度為8.7米.考點:解直角三角形的應(yīng)用22、(1)y=﹣x2﹣x+3;(2)點P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【解析】

(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點A、C的坐標(biāo),由點B所在的位置結(jié)合點B的橫坐標(biāo)可得出點B的坐標(biāo),根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標(biāo);(3)連接AC交OD于點F,由點到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標(biāo)為(﹣4,0),點C的坐標(biāo)為(0,3).∵點B在x軸上,點B的橫坐標(biāo)為,∴點B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設(shè)點D的坐標(biāo)為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點D的坐標(biāo)為(﹣3t,4t).23、(1)①當(dāng)1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大,②P(,);(2)當(dāng)3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對稱性求點B的坐標(biāo),根據(jù)圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構(gòu)建對稱點F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設(shè)AD=a,根據(jù)QE=2FD列方程可求得a的值,并計算P的坐標(biāo);(2)先令y=0求拋物線與x軸的兩個交點坐標(biāo),根據(jù)圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論