版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)知識(shí)點(diǎn)提綱
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱1
一、集合、簡(jiǎn)易規(guī)律(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.規(guī)律連結(jié)詞;7.四種命題;8.充要條件.
二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)大;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.
三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.
四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的根本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面對(duì)量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面對(duì)量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面對(duì)量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的根本性質(zhì);3.不等式的證明;4.不等式的解法;5.含肯定值的不等式.
七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)潔線性規(guī)劃問(wèn)題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.
八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)潔幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)潔幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)潔幾何性質(zhì).
九、(B)直線、平面、簡(jiǎn)潔何體(36課時(shí),28個(gè))1.平面及根本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩共性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)綻開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機(jī)大事的概率;2.等可能大事的概率;3.互斥大事有一個(gè)發(fā)生的概率;4.相互獨(dú)立大事同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣(方法);4.總體分布的估量;5.正態(tài)分布;6.線性回歸.
十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.根本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性和極值;8函數(shù)的值和最小值.
十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個(gè)學(xué)問(wèn)點(diǎn),從前一份試卷要考察90個(gè)學(xué)問(wèn)點(diǎn),掩蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷勝利與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出力量,重視思想方法和思維力量的考察.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!信任對(duì)你的學(xué)習(xí)會(huì)有幫忙的,祝你勝利!答案補(bǔ)充一試全國(guó)高中數(shù)x的一試競(jìng)賽大綱,完全根據(jù)全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的學(xué)問(wèn)范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何根本要求:把握初中數(shù)學(xué)競(jìng)賽大綱所確定的全部?jī)?nèi)容。補(bǔ)充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積的點(diǎn),重心。幾何不等式。簡(jiǎn)潔的等周問(wèn)題。了解下述定理:在周長(zhǎng)肯定的n邊形的集合中,正n邊形的面積。在周長(zhǎng)肯定的簡(jiǎn)潔閉曲線的集合中,圓的面積。在面積肯定的n邊形的集合中,正n邊形的周長(zhǎng)最小。在面積肯定的簡(jiǎn)潔閉曲線的集合中,圓的周長(zhǎng)最小。幾何中的運(yùn)動(dòng):反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充其次數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡(jiǎn)潔的函數(shù)方程。n個(gè)變?cè)钠骄坏仁?,柯西不等式,排序不等式及?yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡(jiǎn)潔的組合恒等式。一元n次方程(多項(xiàng)式)根的個(gè)數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對(duì)定理。簡(jiǎn)潔的初等數(shù)論問(wèn)題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無(wú)窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的根本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì)作截面、外表綻開(kāi)圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱2
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道根底題和一道中檔題,常常與三角、解析幾何、方程、不等式等學(xué)問(wèn)綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算.方程、方程組,數(shù)形結(jié)合,分域爭(zhēng)論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的表達(dá).而復(fù)數(shù)是代數(shù),三角,解析幾何學(xué)問(wèn),相互轉(zhuǎn)化的樞紐,這對(duì)拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題力量是有益的.數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必需具有的根本技能.簡(jiǎn)化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng).
在本章學(xué)習(xí)完畢時(shí),應(yīng)當(dāng)明確對(duì)二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫上圓滿的句號(hào)了,對(duì)向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的學(xué)問(wèn)還有待于進(jìn)一步的討論.
1.學(xué)問(wèn)網(wǎng)絡(luò)圖
復(fù)數(shù)學(xué)問(wèn)點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生把握得不好,對(duì)向量的運(yùn)算的幾何意義的敏捷把握有肯定的困難.對(duì)此應(yīng)仔細(xì)體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其敏捷地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開(kāi)方.有局部學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其敏捷地運(yùn)用有肯定的困難,特殊是開(kāi)方運(yùn)算,應(yīng)對(duì)此仔細(xì)地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義敏捷地解決問(wèn)題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有肯定難度,應(yīng)仔細(xì)加以體會(huì).
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)嫻熟把握復(fù)數(shù)三種表示法,以及它們間的互化,并能精確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特殊是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決詳細(xì)問(wèn)題時(shí)常常用到,是一個(gè)重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,把握復(fù)數(shù)各種形式的運(yùn)算,特殊是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱3
集合
一、集合概念
(1)集合中元素的特征:確定性,互異性,無(wú)序性。
(2)集合與元素的關(guān)系用符號(hào)=表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。
(4)集合的表示法:列舉法,描述法,韋恩圖。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函數(shù)
一、映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
一樣函數(shù)的推斷方法:①對(duì)應(yīng)法則;②定義域(兩點(diǎn)必需同時(shí)具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問(wèn)題的定義域要分類爭(zhēng)論;
②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必需求出其定義域,此時(shí)的定義域要依據(jù)實(shí)際意義來(lái)確定。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;
④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
⑥根本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可依據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:依據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
三、函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:留意定義是相對(duì)與某個(gè)詳細(xì)的區(qū)間而言。
判定方法有:定義法(作差比擬和作商比擬)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比擬大小,證明不等式,解不等式。
奇偶性:定義:留意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比擬f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)展轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿意:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿意:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求把握常見(jiàn)根本函數(shù)的圖像,把握函數(shù)圖像變換的一般規(guī)律。
常見(jiàn)圖像變化規(guī)律:(留意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思索)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
留意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò)平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解根據(jù)向量(m,n)平移的意義。
對(duì)稱變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱
y=f(x)→y=f|x|,把x軸上方的圖象保存,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保存,然后將y軸右邊局部關(guān)于y軸對(duì)稱。(留意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)詳細(xì)參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;
點(diǎn)擊查看:高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)
五、反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要留意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有一樣的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它肯定不存在反函數(shù)。
七、常用的初等函數(shù):
(1)一元一次函數(shù):
(2)一元二次函數(shù):
一般式
兩點(diǎn)式
頂點(diǎn)式
二次函數(shù)求最值問(wèn)題:首先要采納配方法,化為一般式,
有三個(gè)類型題型:
(1)頂點(diǎn)固定,區(qū)間也固定。如:
(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要爭(zhēng)論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。
(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要爭(zhēng)論區(qū)間中的參數(shù).
等價(jià)命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根
留意:若在閉區(qū)間爭(zhēng)論方程有實(shí)數(shù)解的狀況,可先利用在開(kāi)區(qū)間上實(shí)根分布的狀況,得出結(jié)果,在令和檢查端點(diǎn)的狀況。
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)函數(shù):y=(ao,a≠1),圖象恒過(guò)點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a1和0
(5)對(duì)數(shù)函數(shù):
對(duì)數(shù)函數(shù):y=(ao,a≠1)圖象恒過(guò)點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a1和0
留意:
(1)比擬兩個(gè)指數(shù)或?qū)?shù)的大小的根本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不一樣時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要留意與1比擬或與0比擬。
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱4
向量:既有大小,又有方向的量.
數(shù)量:只有大小,沒(méi)有方向的量.
有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.
零向量:長(zhǎng)度為的向量.
單位向量:長(zhǎng)度等于個(gè)單位的向量.
相等向量:長(zhǎng)度相等且方向一樣的向量
向量的運(yùn)算
加法運(yùn)算
AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。
已知兩個(gè)從同一點(diǎn)O動(dòng)身的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線OC就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。
對(duì)于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿意全部的加法運(yùn)算定律。
減法運(yùn)算
與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍舊是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數(shù)乘運(yùn)算
實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ0時(shí),λa的方向和a的方向一樣,當(dāng)λ0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。
設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。
向量的數(shù)量積
已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。
a?b的幾何意義:數(shù)量積a?b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱5
1、含n個(gè)元素的有限集合其子集共有2n個(gè),非空子集有2n—1個(gè),非空真子集有2n—2個(gè)。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補(bǔ)等于補(bǔ)之并。Cu(AUB)=(CuA)∩(CuB),并之補(bǔ)等于補(bǔ)之交。
3、ax2+bx+c0的解集為x(0
+c0的解集為x,cx2+bx+a0的解集為x或x;ax2—bx+
4、c0的解集為x,cx2—bx+a0的解集為-x或x-。
5、原命題與其逆否命題是等價(jià)命題。原命題的逆命題與原命題的否命題也是等價(jià)命題。
6、函數(shù)是一種特別的映射,函數(shù)與映射都可用:f:A→B表示。A表示原像,B表示像。當(dāng)f:A→B表示函數(shù)時(shí),A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。
7、原函數(shù)與反函數(shù)的單調(diào)性全都,且都為奇函數(shù)。偶函數(shù)和周期函數(shù)沒(méi)有反函數(shù)。若f(x)與g(x)關(guān)于點(diǎn)(a,b)對(duì)稱,則g(x)=2b-f(2a-x).
8、若f(-x)=f(x),則f(x)為偶函數(shù),若f(-x)=f(x),則f(x)為奇函數(shù);偶函數(shù)關(guān)于y軸對(duì)稱,且對(duì)稱軸兩邊的單調(diào)性相反;奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,且在整個(gè)定義域上的單調(diào)性全都。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導(dǎo)數(shù)法求出。偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù),奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)。對(duì)于任意常數(shù)T(T≠0),在定義域范圍內(nèi),都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數(shù),且f(x+kT)=f(x),k≠0.
9、周期函數(shù)的特征性:①f(x+a)=-f(x),是T=2a的函數(shù),②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數(shù),③若f(x)既x=a關(guān)對(duì)稱,又關(guān)于x=b對(duì)稱,則f(x)是T=2(b-a)的函數(shù)④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數(shù)⑤f(x+a)=±,則f(x)
是T=4(b-a)的函數(shù)
10、復(fù)合函數(shù)的單調(diào)性滿意“同增異減”原理。定義域都是指函數(shù)中自變量的取值范圍。
11、抽象函數(shù)主要有f(xy)=f(x)+f(y)(對(duì)數(shù)型),f(x+y)=f(x)?f(y)(指數(shù)型),f(x+y)=f(x)+f(y)(直線型)。解此類抽象函數(shù)比擬有用的方法是特別值法和周期法。
12、指數(shù)函數(shù)圖像的規(guī)律是:底數(shù)按逆時(shí)針增大。對(duì)數(shù)函數(shù)與之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數(shù)方程或不等式時(shí),常借助于換元法,應(yīng)特殊留意換元后新變?cè)娜≈捣秶?/p>
14、log10N=lgN;logeN=lnN(e=2.718???);對(duì)數(shù)的性質(zhì):假如a0,a≠0,M0N0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函數(shù)圖像的變換:
(1)水平平移:y=f(x±a)(a0)的圖像可由y=f(x)向左或向右平移a個(gè)單位得到;
(2)豎直平移:y=f(x)±b(b0)圖像,可由y=f(x)向上或向下平移b個(gè)單位得到;
(3)對(duì)稱:若對(duì)于定義域內(nèi)的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關(guān)于直線x=m對(duì)稱;y=f(x)關(guān)于(a,b)對(duì)稱的函數(shù)為y!=2b—f(2a—x).
(4),(學(xué)習(xí)打算);翻折:①y=|f(x)|是將y=f(x)位于x軸下方的局部以x軸為對(duì)稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y(tǒng)軸的右方而成的圖像。
(5)有關(guān)結(jié)論:①若f(a+x)=f(b—x),在x為一切實(shí)數(shù)上成立,則y=f(x)的圖像關(guān)于
x=對(duì)稱。②函數(shù)y=f(a+x)與函數(shù)y=f(b—x)的圖像有關(guān)于直線x=對(duì)稱。
15、等差數(shù)列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,則am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d為公差的等差數(shù)列。an是等差數(shù)列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數(shù)列,則可設(shè)前n項(xiàng)和為sn=an2+bn(注:沒(méi)有常數(shù)項(xiàng)),用方程的思想求解a,b。在等差數(shù)列中,若將其腳碼成等差數(shù)列的項(xiàng)取出組成數(shù)列,則新的數(shù)列照舊是等差數(shù)列。
17、等比數(shù)列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比數(shù)列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數(shù)列。在等比數(shù)列中,若將其腳碼成等差數(shù)列的項(xiàng)取出組成數(shù)列,則新的數(shù)列照舊是等比數(shù)列。裂項(xiàng)公式:
=—,=?(—),常用數(shù)列遞推形式:疊加,疊乘,
18、弧長(zhǎng)公式:l=|α|?r。s扇=?lr=?|α|r2=?;當(dāng)一個(gè)扇形的周長(zhǎng)肯定時(shí)(為L(zhǎng)時(shí)),
其面積為,其圓心角為2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
學(xué)數(shù)學(xué)要對(duì)整個(gè)數(shù)學(xué)學(xué)問(wèn)點(diǎn)的脈絡(luò)有清楚的把握,就是心中要有一個(gè)進(jìn)展的數(shù)學(xué)框架。把每單元前的單元介紹看看,留意后幾行,一般都是重點(diǎn)。以下是給大家整理的高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱,盼望對(duì)大家有所幫忙,歡送閱讀!
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱1
一、集合、簡(jiǎn)易規(guī)律(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.規(guī)律連結(jié)詞;7.四種命題;8.充要條件.
二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)大;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.
三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.
四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的根本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面對(duì)量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面對(duì)量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面對(duì)量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的根本性質(zhì);3.不等式的證明;4.不等式的解法;5.含肯定值的不等式.
七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)潔線性規(guī)劃問(wèn)題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.
八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)潔幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)潔幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)潔幾何性質(zhì).
九、(B)直線、平面、簡(jiǎn)潔何體(36課時(shí),28個(gè))1.平面及根本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩共性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)綻開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機(jī)大事的概率;2.等可能大事的概率;3.互斥大事有一個(gè)發(fā)生的概率;4.相互獨(dú)立大事同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估量;5.正態(tài)分布;6.線性回歸.
十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.根本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性和極值;8函數(shù)的值和最小值.
十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個(gè)學(xué)問(wèn)點(diǎn),從前一份試卷要考察90個(gè)學(xué)問(wèn)點(diǎn),掩蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷勝利與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出力量,重視思想方法和思維力量的考察.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!信任對(duì)你的學(xué)習(xí)會(huì)有幫忙的,祝你勝利!答案補(bǔ)充一試全國(guó)高中數(shù)x的一試競(jìng)賽大綱,完全根據(jù)全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的學(xué)問(wèn)范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何根本要求:把握初中數(shù)學(xué)競(jìng)賽大綱所確定的全部?jī)?nèi)容。補(bǔ)充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積的點(diǎn),重心。幾何不等式。簡(jiǎn)潔的等周問(wèn)題。了解下述定理:在周長(zhǎng)肯定的n邊形的集合中,正n邊形的面積。在周長(zhǎng)肯定的簡(jiǎn)潔閉曲線的集合中,圓的面積。在面積肯定的n邊形的集合中,正n邊形的周長(zhǎng)最小。在面積肯定的簡(jiǎn)潔閉曲線的集合中,圓的周長(zhǎng)最小。幾何中的運(yùn)動(dòng):反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充其次數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡(jiǎn)潔的函數(shù)方程。n個(gè)變?cè)钠骄坏仁剑挛鞑坏仁?,排序不等式及?yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡(jiǎn)潔的組合恒等式。一元n次方程(多項(xiàng)式)根的個(gè)數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對(duì)定理。簡(jiǎn)潔的初等數(shù)論問(wèn)題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無(wú)窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的根本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì)作截面、外表綻開(kāi)圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱2
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道根底題和一道中檔題,常常與三角、解析幾何、方程、不等式等學(xué)問(wèn)綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算.方程、方程組,數(shù)形結(jié)合,分域爭(zhēng)論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的表達(dá).而復(fù)數(shù)是代數(shù),三角,解析幾何學(xué)問(wèn),相互轉(zhuǎn)化的樞紐,這對(duì)拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題力量是有益的.數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必需具有的根本技能.簡(jiǎn)化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng).
在本章學(xué)習(xí)完畢時(shí),應(yīng)當(dāng)明確對(duì)二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫上圓滿的句號(hào)了,對(duì)向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的學(xué)問(wèn)還有待于進(jìn)一步的討論.
1.學(xué)問(wèn)網(wǎng)絡(luò)圖
復(fù)數(shù)學(xué)問(wèn)點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生把握得不好,對(duì)向量的運(yùn)算的幾何意義的敏捷把握有肯定的困難.對(duì)此應(yīng)仔細(xì)體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其敏捷地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開(kāi)方.有局部學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其敏捷地運(yùn)用有肯定的困難,特殊是開(kāi)方運(yùn)算,應(yīng)對(duì)此仔細(xì)地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義敏捷地解決問(wèn)題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有肯定難度,應(yīng)仔細(xì)加以體會(huì).
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)嫻熟把握復(fù)數(shù)三種表示法,以及它們間的互化,并能精確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特殊是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決詳細(xì)問(wèn)題時(shí)常常用到,是一個(gè)重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,把握復(fù)數(shù)各種形式的運(yùn)算,特殊是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱3
集合
一、集合概念
(1)集合中元素的特征:確定性,互異性,無(wú)序性。
(2)集合與元素的關(guān)系用符號(hào)=表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。
(4)集合的表示法:列舉法,描述法,韋恩圖。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函數(shù)
一、映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
一樣函數(shù)的推斷方法:①對(duì)應(yīng)法則;②定義域(兩點(diǎn)必需同時(shí)具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問(wèn)題的定義域要分類爭(zhēng)論;
②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必需求出其定義域,此時(shí)的定義域要依據(jù)實(shí)際意義來(lái)確定。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;
④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
⑥根本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可依據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:依據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
三、函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:留意定義是相對(duì)與某個(gè)詳細(xì)的區(qū)間而言。
判定方法有:定義法(作差比擬和作商比擬)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比擬大小,證明不等式,解不等式。
奇偶性:定義:留意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比擬f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)展轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿意:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿意:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求把握常見(jiàn)根本函數(shù)的圖像,把握函數(shù)圖像變換的一般規(guī)律。
常見(jiàn)圖像變化規(guī)律:(留意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思索)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
留意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò)平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解根據(jù)向量(m,n)平移的意義。
對(duì)稱變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱
y=f(x)→y=f|x|,把x軸上方的圖象保存,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保存,然后將y軸右邊局部關(guān)于y軸對(duì)稱。(留意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)詳細(xì)參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;
點(diǎn)擊查看:高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)
五、反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要留意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有一樣的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它肯定不存在反函數(shù)。
七、常用的初等函數(shù):
(1)一元一次函數(shù):
(2)一元二次函數(shù):
一般式
兩點(diǎn)式
頂點(diǎn)式
二次函數(shù)求最值問(wèn)題:首先要采納配方法,化為一般式,
有三個(gè)類型題型:
(1)頂點(diǎn)固定,區(qū)間也固定。如:
(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要爭(zhēng)論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。
(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要爭(zhēng)論區(qū)間中的參數(shù).
等價(jià)命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根
留意:若在閉區(qū)間爭(zhēng)論方程有實(shí)數(shù)解的狀況,可先利用在開(kāi)區(qū)間上實(shí)根分布的狀況,得出結(jié)果,在令和檢查端點(diǎn)的狀況。
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)函數(shù):y=(ao,a≠1),圖象恒過(guò)點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a1和0
(5)對(duì)數(shù)函數(shù):
對(duì)數(shù)函數(shù):y=(ao,a≠1)圖象恒過(guò)點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a1和0
留意:
(1)比擬兩個(gè)指數(shù)或?qū)?shù)的大小的根本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不一樣時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要留意與1比擬或與0比擬。
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱4
向量:既有大小,又有方向的量.
數(shù)量:只有大小,沒(méi)有方向的量.
有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.
零向量:長(zhǎng)度為的向量.
單位向量:長(zhǎng)度等于個(gè)單位的向量.
相等向量:長(zhǎng)度相等且方向一樣的向量
向量的運(yùn)算
加法運(yùn)算
AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。
已知兩個(gè)從同一點(diǎn)O動(dòng)身的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線OC就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。
對(duì)于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿意全部的加法運(yùn)算定律。
減法運(yùn)算
與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍舊是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數(shù)乘運(yùn)算
實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ0時(shí),λa的方向和a的方向一樣,當(dāng)λ0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。
設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。
向量的數(shù)量積
已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。
a?b的幾何意義:數(shù)量積a?b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。
高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)提綱5
1、含n個(gè)元素的有限集合其子集共有2n個(gè),非空子集有2n—1個(gè),非空真子集有2n—2個(gè)。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補(bǔ)等于補(bǔ)之并。Cu(AUB)=(CuA)∩(CuB),并之補(bǔ)等于補(bǔ)之交。
3、ax2+bx+c0的解集為x(0
+c0的解集為x,cx2+bx+a0的解集為x或x;ax2—bx+
4、c0的解集為x,cx2—bx+a0的解集為-x或x-。
5、原命題與其逆否命題是等價(jià)命題。原命題的逆命題與原命題的否命題也是等價(jià)命題。
6、函數(shù)是一種特別的映射,函數(shù)與映射都可用:f:A→B表示。A表示原像,B表示像。當(dāng)f:A→B表示函數(shù)時(shí),A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。
7、原函數(shù)與反函數(shù)的單調(diào)性全都,且都為奇函數(shù)。偶函數(shù)和周期函數(shù)沒(méi)有反函數(shù)。若f(x)與g(x)關(guān)于點(diǎn)(a,b)對(duì)稱,則g(x)=2b-f(2a-x).
8、若f(-x)=f(x),則f(x)為偶函數(shù),若f(-x)=f(x),則f(x)為奇函數(shù);偶函數(shù)關(guān)于y軸對(duì)稱,且對(duì)稱軸兩邊的單調(diào)性相反;奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,且在整個(gè)定義域上的單調(diào)性全都。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導(dǎo)數(shù)法求出。偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù),奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)。
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030消費(fèi)級(jí)無(wú)人機(jī)航拍市場(chǎng)飽和度與專業(yè)級(jí)應(yīng)用拓展分析報(bào)告
- 2025-2030消費(fèi)級(jí)無(wú)人機(jī)市場(chǎng)滲透率提升與產(chǎn)業(yè)鏈投資機(jī)會(huì)報(bào)告
- 2025-2030消費(fèi)級(jí)AR眼鏡光學(xué)方案選擇與用戶體驗(yàn)痛點(diǎn)研究
- 2025-2030消費(fèi)電子用微型電機(jī)能效標(biāo)準(zhǔn)升級(jí)與噪音控制技術(shù)發(fā)展趨勢(shì)報(bào)告
- 2025-2030消費(fèi)分級(jí)趨勢(shì)下免漆門產(chǎn)品矩陣規(guī)劃策略分析
- 2025-2030洗衣行業(yè)碳中和目標(biāo)下設(shè)備能耗標(biāo)準(zhǔn)升級(jí)路徑分析
- 2025-2030泉州市茶葉產(chǎn)業(yè)供應(yīng)鏈?zhǔn)袌?chǎng)供需調(diào)研投資前瞻規(guī)劃報(bào)告
- 教師節(jié)活動(dòng)策劃方案及執(zhí)行計(jì)劃
- 園林景觀設(shè)計(jì)方案及施工工藝解析
- 公司分紅激勵(lì)制度實(shí)施方案
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計(jì)規(guī)范-PDF解密
- GB/T 43824-2024村鎮(zhèn)供水工程技術(shù)規(guī)范
- 心力衰竭藥物治療的經(jīng)濟(jì)評(píng)估與成本效益分析
- 道路綠化養(yǎng)護(hù)投標(biāo)方案(技術(shù)方案)
- QA出貨檢驗(yàn)日?qǐng)?bào)表
- 校服采購(gòu)?fù)稑?biāo)方案
- 中外建筑史課件
- 母嬰保健-助產(chǎn)技術(shù)理論考核試題題庫(kù)及答案
- dd5e人物卡可填充格式角色卡夜版
- ??怂箍禉C(jī)器操作說(shuō)明書
- GB/T 6003.1-1997金屬絲編織網(wǎng)試驗(yàn)篩
評(píng)論
0/150
提交評(píng)論