微積分課程論文_第1頁
微積分課程論文_第2頁
微積分課程論文_第3頁
微積分課程論文_第4頁
微積分課程論文_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PAGEPAGE4微積分課程論文——非線性哲學與線性非哲學PB08207021夏爾玉引言——一階線性微分方程的一般形式是+p(x)y=Q(x)二階線性微分方程的一般形式是y’’+p(x)y’+q(x)y=f(x)n階常系數(shù)線性微分方程的一般形式是p1y’+p0y=f(x)《微積分》180頁:設y1(x),y2(x)……ym(x)是定義在(a,b)上的函數(shù),若存在不全為0的常數(shù)c1,c2,……cm,使得在(a,b)上c1y1(x)+c2y2(x)+……+cmym(x)恒為0,則稱它們在(a,b)上線性相關,否則稱線性無關。F(x)和g(x)線性相關,則它們的Wronsky行列式恒為零。在學習常微分方程這一章時,以上幾個概念已經作為一種基礎被我們接受。出現(xiàn)在上述幾個概念中有一個共同的名詞——“線性”,什么是線性?它究竟是怎樣一種性質?帶著疑問我開始了自己的探索,卻發(fā)現(xiàn)了解了一些反而更迷茫。我?guī)е鴮€性代數(shù)的無知走入這個陌生的領域,僅以我的思考為大家呈現(xiàn)“非線性的哲學與線性非哲學”?;遣怀杀壤?,換言之,變量間的變化率不是恒量,函數(shù)的斜率在其定義域中有不存在或不相等的地方,概括地說,就是物理變量間的一級增量關系在變量的定義域內是不對稱的??梢哉f,這種對稱破缺是非線性關系的最基本的體現(xiàn),也是非線性系統(tǒng)復雜性的根源。為了說明其含義,我們給出幾個例子:激光的生成是非線性的。當外加電壓較小時,激光器猶如普通電燈,光向四面八方散射;而當外加電壓達到某一定值時,會突然出現(xiàn)一種全新現(xiàn)象:受激原子好像聽到“向右看齊”的命令,發(fā)射出相位和方向都一致的單色光,就是激光。電容器的電阻很大,在一定范圍內其導電能力很微弱,幾乎不隨外加電壓變化而變化,可是當外界電壓達到擊穿電壓后電容器就突變成一種可以導電的狀態(tài)?;瘜W酸堿滴定過程中PH的變化也是非線性的。加入NaOH(ml)中和百分比混合溶液的PH001.0090.0090.002.2899.0099.003.3099.9099.904.31100.0100.07.00100.1100.19.70101.0101.010.70110.0110.011.70圖0.01000mol/lNaOH溶液滴定0.1000mol/lHCl溶液可以看到在滴入氫氧化鈉99.90到100.1的過程中PH變化很快,化學上,我們稱之為PH突躍。兩只眼睛的視敏度是一只眼睛的6-10倍。十枚橘子的價錢是一枚的十倍。但批發(fā)價格是不成比例的:一大箱橘子的價錢比一枚的價錢乘以橘子的個數(shù)要少。通過以上這些例子我們知道線性關系是互不相干的獨立關系,而非線性則是相互作用,而正是這種相互作用,使得整體不再是簡單地等于部分之和,而可能出現(xiàn)不同于"線性疊加"的增益或虧損。由此我聯(lián)想到人類社會的發(fā)展。從前,人與人的關系非常緊密,人們群居,或稱聚居,這相當于一種非線性,而隨著時代的發(fā)展,人與人之間的冷漠,生疏是否在走向“互不相干”的獨立線性關系呢?這一種由線性向非線性的轉化,究竟是一種進步,還是一種退步呢?與非線性定義相關的兩個詞是混沌和耦合?;煦纾?.古代傳說中指天地未分之前渾然一體的狀態(tài);2.模糊,糊涂。(《現(xiàn)代漢語規(guī)范字典》2005年7月第一版)混沌,可以近似理解為非線性。天體運動存在混沌;電、光與聲波的振蕩,會突陷混沌;地磁場在400萬年間,方向突變16次,也是由于混沌。甚至人類自己,原來都是非線性的:與傳統(tǒng)的想法相反,健康人的腦電圖和心臟跳動并不是規(guī)則的,而是混沌的,混沌正是生命力的表現(xiàn)。宇宙形成之初的狀態(tài)是混沌的。我們可以從輸入輸出的角度理解。能量的輸入與輸出既不是成正比例也不是成反比例的。耦合:物理學上指兩個或兩個以上的體系或運動形式之間通過各種作用而彼此影響的現(xiàn)象。例如在兩個單擺中間連一根線,它們的振動就會發(fā)生耦合。(《現(xiàn)代漢語規(guī)范字典》2005年7月第一版)由此我們聯(lián)想到排列組合問題中的耦合問題。有甲乙兩副紙牌各n張,編號1至n,把牌洗過后配成n對,每對甲乙紙牌各一張,若有同一隊的兩張牌同號則說又一個耦合,問至少有一個耦合的配牌方法有多少種?通過容斥原理我們可以得到想要的公式:n!*(1-)但如果不存在耦合呢?就是說,甲乙兩副牌中牌號兩兩不同,要求配牌方法則顯然要容易的多了。耦合與否類似于非線性和線性,我們看出線性問題的處理要比非線性問題容易得多。正如我們說1+1=2是一種簡單線性,1+1=3,1+1=4相當于非線性,似乎非線性是更遠離我們認識范圍的。又比如線性方程組的求解相對非線性方程組要簡單許多。我認為,實質上線性只是非線性的一種理想化模型,一種近似處理和特殊情況。其存在意義類似于質點,光滑曲面及勻速直線運動。因而觀點二:線性是從數(shù)學含義上對非線性的近似,它只是簡化問題的一種手段。這里我也就回答了剛剛提出的關于人類社會是進步還是退化的問題,如果我們尚且不能說這是一種退步,但起碼這是一種簡化,一種向簡單方向的特化。為了說明觀點二我們舉線性規(guī)劃為例。決策變量、約束條件、目標函數(shù)是線性規(guī)劃的三要素.當我們得到的數(shù)學模型的目標函數(shù)為線性函數(shù),約束條件為線性等式或不等式時稱此數(shù)學模型為線性規(guī)劃模型。比如我們在處理最簡單的問題,工廠如何安排人手生產不同產品獲取最大利潤的問題,我們在編寫目標函數(shù)時往往單純的把某件物品的利潤與它的價格相乘。但我們忽略了經濟中的基本規(guī)律,也就是說,當供求關系改變時,產品的利潤也會隨之發(fā)生變化。因此線性規(guī)劃其實只是一種簡化的模型。同時,我們又考慮,線性與非線性簡單疊加的結果往往是非線性的,這就類似于0與任何實數(shù)的乘積都是0,因為0在乘法運算中起主導作用。我們也可以考慮,非線性其實是起主導作用的。因此,我們可以認為線性是從數(shù)學含義上對非線性的近似,它只是簡化問題的一種手段。在這里,我對我的前兩個觀點做一個簡要的總結:觀點一:“線性”在文學角度和自然科學角度的定義有著不同的外延和內涵。觀點二:線性是從數(shù)學含義上對非線性的近似,它只是簡化問題的一種手段。由于線性的特殊性,其特性已被廣泛研究,而非

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論