版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高考數(shù)學選填題專項測試02(函數(shù)性質)第I卷(選擇題)一、單選題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(·江西師大附中高三一模)已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】依照偶函數(shù)的定義,對定義域內的任意實數(shù),f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=SKIPIF1<0,又f(–x)=f(x),∴b=0,∴a+b=SKIPIF1<0.故選B.【點睛】本題考查偶函數(shù)的定義,對定義域內的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).2.(·福建高三)若函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0()A.2B.-2C.3D.4【答案】B【解析】【分析】由SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),可知對任意的SKIPIF1<0,SKIPIF1<0都成立,代入函數(shù)式可求得SKIPIF1<0的值.【詳解】由題意,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是奇函數(shù),則SKIPIF1<0,即對任意的SKIPIF1<0,SKIPIF1<0都成立,故SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查奇函數(shù)性質的應用,考查學生的計算求解能力,屬于基礎題.3.(·遼寧高三開學考試(文))已知函數(shù)SKIPIF1<0在定義域SKIPIF1<0上是單調函數(shù),若對任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的值是().A.5B.6C.7D.8【答案】D【解析】設SKIPIF1<0,所以SKIPIF1<0,那么SKIPIF1<0,當SKIPIF1<0SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,那么SKIPIF1<0,故選D.4.(·宜賓市敘州區(qū)第一中學校高三月考)已知SKIPIF1<0是定義在R上的偶函數(shù),且滿足SKIPIF1<0,當SKIPIF1<0,則SKIPIF1<0()A.-1.5 B.-0.5 C.0.5 D.1.5【答案】D【解析】【分析】由題意,函數(shù)SKIPIF1<0是定義在R上的偶函數(shù),且是以3為周期的周期函數(shù),利用函數(shù)的周期和奇偶性,即可求解,得到答案.【詳解】由題意,函數(shù)SKIPIF1<0是定義在R上的偶函數(shù),且滿足SKIPIF1<0,則函數(shù)SKIPIF1<0是以3為周期的周期函數(shù),又由SKIPIF1<0,則SKIPIF1<0,故選D.【點睛】本題主要考查了函數(shù)的周期性和函數(shù)的奇偶性的應用,其中解答中得出函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),進而利用函數(shù)的奇偶性求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.5.(·全國高三二模)設函數(shù)SKIPIF1<0的導函數(shù)為SKIPIF1<0,若SKIPIF1<0是奇函數(shù),則曲線SKIPIF1<0在點SKIPIF1<0處切線的斜率為()A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】D【解析】【分析】利用SKIPIF1<0為奇函數(shù)求得SKIPIF1<0的值,由此求得SKIPIF1<0的值.【詳解】依題意SKIPIF1<0,由于SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D【點睛】本小題主要考查函數(shù)導數(shù)的計算,考查函數(shù)的奇偶性,屬于基礎題.6.(·河北正定中學高三月考)已知定義域為SKIPIF1<0的偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,且SKIPIF1<0,SKIPIF1<0,則下列函數(shù)中符合上述條件的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意,函數(shù)SKIPIF1<0的圖象關于SKIPIF1<0軸對稱,但在SKIPIF1<0單調遞減,在SKIPIF1<0單調遞增,不滿足題意;函數(shù)SKIPIF1<0的圖象關于原點對稱,所以函數(shù)為奇函數(shù),不滿足題意;函數(shù)SKIPIF1<0,即函數(shù)的值域為SKIPIF1<0,不滿足題意,故選C.7.(·云南昆明一中高三月考)已知偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)SKIPIF1<0是偶函數(shù)及SKIPIF1<0得出,SKIPIF1<0,解出SKIPIF1<0的范圍即可.【詳解】由已知SKIPIF1<0,又偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,可得:SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,故選:D.【點睛】考查偶函數(shù)的定義,以及減函數(shù)的定義,絕對值不等式的解法.8.(·湖南高三)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上單調遞增,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)題意,由函數(shù)的奇偶性可得SKIPIF1<0,SKIPIF1<0,又由SKIPIF1<0,結合函數(shù)的單調性分析可得答案.【詳解】根據(jù)題意,函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),則SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,又由SKIPIF1<0在SKIPIF1<0上單調遞增,則有SKIPIF1<0,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.9.(·貴州高三月考)函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】由題意SKIPIF1<0,所以令SKIPIF1<0,化簡SKIPIF1<0,得到SKIPIF1<0,從而SKIPIF1<0,聯(lián)立兩式求解出SKIPIF1<0的周期為6,從而SKIPIF1<0,即可求出SKIPIF1<0.【詳解】由題意,取SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0①,所以SKIPIF1<0②,聯(lián)立①②得,SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為SKIPIF1<0,SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0.故選:C【點睛】本題主要考查函數(shù)值的求法,如何利用題目中的條件求解出函數(shù)的周期是關鍵,屬于中檔題.10.(·湖北高三月考(理))已知當SKIPIF1<0時,SKIPIF1<0,則以下判斷正確的是().A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0與SKIPIF1<0的大小關系不確定【答案】B【解析】【分析】由函數(shù)的增減性及導數(shù)的應用得,設SKIPIF1<0,SKIPIF1<0,而此函數(shù)為偶函數(shù),求導后可判斷函數(shù)在SKIPIF1<0為增函數(shù),然后利用偶函數(shù)的性質結合增減性可得答案.【詳解】設SKIPIF1<0,則它為偶函數(shù),SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,函數(shù)在SKIPIF1<0遞增,由偶函數(shù)對稱性知在區(qū)間SKIPIF1<0遞減.SKIPIF1<0變形得SKIPIF1<0即SKIPIF1<0,∴SKIPIF1<0.故選:B【點睛】此題考查了函數(shù)的增減性及導數(shù)的應用,屬于中檔題.11.(·河南高三一模)關于函數(shù)SKIPIF1<0,有下列三個結論:①SKIPIF1<0是SKIPIF1<0的一個周期;②SKIPIF1<0在SKIPIF1<0上單調遞增;③SKIPIF1<0的值域為SKIPIF1<0.則上述結論中,正確的個數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】利用三角函數(shù)的性質,逐個判斷即可求出.【詳解】①因為SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的一個周期,①正確;②因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上不單調遞增,②錯誤;③因為SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),又SKIPIF1<0是SKIPIF1<0的一個周期,所以可以只考慮SKIPIF1<0時,SKIPIF1<0的值域.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調遞增,所以SKIPIF1<0,SKIPIF1<0的值域為SKIPIF1<0,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質應用.12.(·河北高三月考)定義在SKIPIF1<0上函數(shù)SKIPIF1<0的導函數(shù)為SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】令SKIPIF1<0,可求函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減.由SKIPIF1<0,可得SKIPIF1<0,從而可求不等式SKIPIF1<0的解集.【詳解】令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減.由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減,SKIPIF1<0.故不等式SKIPIF1<0的解集為SKIPIF1<0.故選:SKIPIF1<0.【點睛】本題考查導數(shù)在研究函數(shù)中的應用,屬于中檔題。第II卷(非選擇題)二、填空題:本大題共4小題,每小題5分,共20分。把答案填在題中的橫線上。13.(·河南鶴壁高中高三月考)已知a≥0,函數(shù)f(x)=(x2?2ax)?ex,若f(x)【答案】[【解析】在上上是單調減函數(shù),,[?1,1],設,,則.14.(·江西高三)若SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【解析】【分析】根據(jù)奇函數(shù)的性質SKIPIF1<0即可求值.【詳解】∵SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點睛】本題主要考查了函數(shù)奇偶性的應用,屬于中檔題.15.(·四川高三三模)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),其導函數(shù)為SKIPIF1<0.若SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集是___________.【答案】SKIPIF1<0【解析】【分析】構造SKIPIF1<0,先利用定義判斷SKIPIF1<0的奇偶性,再利用導數(shù)判斷其單調性,轉化SKIPIF1<0為SKIPIF1<0,結合奇偶性,單調性求解不等式即可.【詳解】令SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0上的偶函數(shù),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞減,于是在SKIPIF1<0上遞增.由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,于是SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新員工培訓收獲
- 新員工培訓及保留
- 新員工衛(wèi)生培訓
- 清潔雙手守護健康課件
- 2026年大學生心理健康知識競賽試卷及答案(六)
- 寵物關懷呵護承諾書3篇范文
- 怎樣養(yǎng)成良好學習習慣議論文7篇
- 安全培訓費用
- 2026中國國際航空股份有限公司廣東分公司休息室就業(yè)見習崗招聘2人備考題庫含答案詳解(輕巧奪冠)
- 安徽醫(yī)科大學《語言學概論》2024 - 2025 學年第一學期期末試卷
- 第四方支付風險管理方案
- 醫(yī)德醫(yī)風崗前知識培訓課件
- 濟南版小學數(shù)學一年級上冊期中考試題及答案
- GJB297B-2020鈍化黑索今規(guī)范
- 地下車庫入口雨棚施工方案范本
- 設計成果保密管理制度
- 電廠重要閥門管理制度
- T/CHES 42-2020水質涕滅威、克百威和甲萘威的測定液相色譜法
- 人防車位管理合同協(xié)議書
- DB37-T2119-2025轉爐煤氣干法電除塵系統(tǒng)安全技術要求
- 西方樂理與其他樂理對比試題及答案
評論
0/150
提交評論