版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
IBMInstituteforBusinessValue|ResearchInsights
GeneratingROI
withAI
Sixcapabilitiesthatdrive
world-classresults
HowIBM
canhelp
ClientscanrealizethepotentialofAI,analytics,anddatausingIBM’sdeepindustry,functional,andtechnicalexpertise;enterprise-gradetechnologysolutions;andscience-basedresearchinnovations.
FormoreinformationaboutAIservicesfromIBMConsulting,visit
/services/artificial-intelligence
FormoreinformationaboutAIsolutionsfromIBMSoftware,visit
/Watson
FormoreinformationaboutAIinnovationsfromIBMResearch?,visit
/artificial-intelligence
2
1
Key
takeaways
Maturecapabilities
differentiatetheAIprojects
thatdeliverthehighestROI.
MostAIprojectsaren’t
profitableenough—yet.
AsAImatures,ROIonenterprise-wideinitiativesaveragedonly5.9%,wellbelowthetypical10%costofcapital.
Dataiscrucial—butonly
onepieceofthepuzzle.
Buildingontrusted,high-qualitydataatscaleboostedreturnsonAIinvestmentstoasmuchas9%.
Companiescanstrike
goldwiththerightapproach.
Best-in-classcompaniesthathavebuiltsixmaturecapabilitiesreportedaverageROIof13%onAIprojects.
2
3
AlleyesareonAI
CantheROIofAImatchthehype?
Artificialintelligenceissuddenlysexy—again.
GenerativeAIhastakenthebusinessworldbystorm,withlargelanguagemodels(LLMs)suchasOpenAI’sChatGPT,Baidu’sERNIE,Google’sLaMDAandFacebook’sLLaMAsplashedacrossthenews.Andexecutivesaren’timmunetothehype.ReferencestoAIonearningscallswereup77%year-over-yearinearly2023.1
Andthemoneyisfollowing.AIisbecominganever-largercomponentofITbudgets,withworldwidespendingonAI-centricsystemsexpectedtohit$154billionthisyear—up27%over2022.2
Butwillenterprisesspendtheseresourceswisely?AsAImodelsbecomefaster,smarter,andmorereliable,organizationsareracingtocapitalize.Canthereturnoninvestment(ROI)matchexpectations?
Theanswer:Yes—butonlyiforganizationstakeadisciplinedapproach.Tocometothisconclusion,wesurveyed2,500globalexecutivesin34businessandtechnologyrolesacross16countriesfromallmajorregions.WeaskedthemtodeconstructhowtheircompaniesareinvestinginAItoday,whatreal-worldROIisbeingproduced,andwhichelementsarerequiredtoboosteffectiveness.InpartnershipwithOxfordEconomics,wethenanalyzedwhatkeybusinessandtechnologycapabilitiesareconnectedtothemostsuccessfulAIinitiatives.(See“Studyapproachandmethodology”onpage31.)
4
6%
5%
4%
3%
2%
1%
0%
Companiesthatdevelopmature
AIcapabilitieswillgenerateprofits—
notjustmediabuzz.
OurfindingsrevealyawningoutcomegapsacrossAIprojects.Fewdeliverthefinancialvalueshareholdersexpect.Infact,averageROIonenterprise-wideinitiativesisjust5.9%,wellbelowthetypical10%costofcapital.Yet,therearedistinctimprovementsasyoumovealongtheAImaturitycontinuum—withbest-in-classcompaniesreapinganenviable13%ROI(seeFigure1).
Sowhatsetstheseworld-classperformersapart?Andhowcanleadersacrosssectorslearnfromtheirsuccess?Thisreportwilloutline:
–WhyadhocAIprojectsdeliverlessvaluethanstrategicprograms
–TheimpactoftrusteddataandthevirtuouscycleofAI-datasymbiosis
–Sixkeycapabilitiesthatdefineandenabletop-tierorganizations.
BuildingamatureAIorganization—onasolidfoundationoftrust—isrequiredtounlockAI’sfullpotential.Companiesthatgetitrightaregeneratingsignificantbusinessvalue—notjustmediabuzz.
FIGURE1
Acutabovetherest
Best-in-classcompanies
deliverAIROIthatexceeds
theircostofcapital.
AIRoI
14%
13%
13%
30%
12%
more
10%
Averagecostofcapitalforcompanies
~10%
9%
8%
7%
5.9%
AverageROIofallorganizations
AverageROIfortop10%oforganizations
5
BeyondopportunisticAI
Asorganizations
figureoutwhere
andhowtodeploy
AI,boldbets
translateto
biggergains.
OrganizationshavebeenbettingonAIforthebetterpart
ofadecade—andthelearningcurvehasbeensteep.3
Somegotcaughtupinthe“wowfactor”ofthetechnology,forgettingtoalignprojectstostrategy.OtherssawAIasahammer,andeverybusinessproblemanail.Almostallstruggledtoscaletheirimplementationsbeyondexperiments,proofsofconcepts,andpilots.
Thegoodnewsfromourresearch:Manyorganizationshaveturnedacorner.AIrolloutsaremoresuccessfulthanever,withmorethantwiceasmanyexecutivessayingtheirorganizationusedAIeffectivelyin2021(54%)thanin2020(25%).TheyalsoexpectAIinvestmenttogrowto6.5%ofITspendby2024.
Overall,returnoninvestmenthasbeenrisingsteadilysince2020.Forenter-prise-wideAIinitiatives,averageROIhasgrownfromjustover1%inearly2020tonearly6%bytheendof2021.4ThiscouldbearesultofthepandemicpushingorganizationstoinvestinAI-drivensolutionsthatwouldexpediteremoteworking,enhancetheuserexperience,anddecreasecosts.
TogaugewhetherAIROIhaskeptpacewiththistrend,wesurveyedmorethan350executivesagaininAprilandMay2023.WefoundthatAIROIhascontinuedontheexpectedgrowthtrajectory,reachinganestimated8.3%in2022(seeFigure2).5
6
10%
Still,thesereturnsarelowerthanthecostofcapital,whichistypically10%acrossmostindustries.Overall,fewerthanoneinfourorganizationsinoursurveysaythey’veachievedAIROIhigherthan10%.
Inessence,AIisfollowingthe“J-curve”patterntypicalfortransformativetechnologies.6Adoptingemergingtechatscalerequiresreimaginingbusinessmodels,workflows,skills,andmanyotherfacetsofbusiness.Returnsoftenstagnatewhileteamsworkoutthekinks.Yet,ascapabilitiesmature,performancecanrisequickly.Inthisenvironment,enterprisesneedtohaveastrategicplanforscalingtheimpactofAIovertime.
FIGURE2
Returnsareontherise
ROIfromAIprojectsgrew
morethan6timesbetween
2020and2022.
AIRoI
9%
8%
7%
6%
5%
4%
3%
2%
1%
0%
8.3%
5.9%
21%
13%
Early2021
2022
(estimated)
2020
Late
2021
Source:2020:Deloitte/ESLAIsurvey;Early2021:IBVAIethics
survey;Late2021:IBVAIcapabilitysurvey;2022:IBVgenerativeAI
pulsesurvey,April-May2023.
7
OuranalysisrevealshowROIimprovesacrossacontinuumofAImaturity(seeFigure3).Theaverageenterprise,whichpursuesadhocand/oropportu-nisticAIinitiatives,isthelaggard.In2021,thosethatintentionallyembeddedAIinproducts,services,businessunits,andfunctionssawROIclimbabove7%.Asmaturityextendedastepfurther,withAIdeployedaspartofastrategicbusinesstransfor-mation,returnsimprovedagain,to8%.
AsorganizationsfigureoutwhereandhowtodeployAI,boldbetstranslateintobiggerandbiggergains.Atthetopofthecurveisourbest-in-classcategory,reportinganaverageROIof13%.Bytakingasteady,balancedapproachtoadoptingAI—whichincludesbuildingdataandanalyticsskills,developingamultidisciplinaryapproach,creatingdiverseteams,andtrainingteamsthroughAICentersofExcellence(CoEs)—they’vedevelopedcomprehensivecapabilitiesthroughouttheenterprise.
FIGURE3
AI-centricstrategiesboostROI
AligningAIwithbusinessprioritiesyields
muchhigherROIthanadhocprojects.
Product
embedded
Newbusiness
modelenabler
Organicgrowth,
innovation,and
differentiation
Transformation
andplatform
strategy
EmbeddingAIintocoreproducts
UsingAItohelpachieveplatformeconomics
AIstrategiccontinuum
Horizontallydeployed
Verticallyintegrated
Customer/operationaleffectiveness
Opportunistic
Customer/
operational
effectiveness
DeployingAIinto
functions
Adhoc
Strategic
importanceofAI
Varied
IntegratingAIwithinbusinessunit(s)
Companytypes
ROIof4.7%7.2%7.4%8.0%
organizations
Perspective
FromAlphabet
toWalmart:
Becomingan
AI-firstbusiness
Legacyenterprisesarelikeindustrial-eracities.They’reconnectedbywindingcorridorsthatgreworganicallyratherthanstraight,efficientavenues.Theyfacepersistentchallengeswithmodernization,asprogressisoftenhinderedbycentury-oldinfrastructure.
AI-firstcompaniesstartwithacleansheetofpaper.Leaderscanbemorecreative,moreflexible—andmakeemergingtechnologiescentraltothebusinessmodel.“Ihaven’tencountereddigitalnativeswhosay,‘I’mgoingtoinnovate.’Ionlyhearthosestatementsfromlegacyorganizations,becausethey’retryingtogetoutofthatrut,”saidRaviSimhambhatla,ChiefDigitalOfficeratAvisBudgetGroup,inarecentIBVreport.“Fordigitalnatives,it’sallaboutdisruptingthemselves.”7
Digitalnatives,suchasAlphabet,Netflix,Amazon,andMeta—high-growthbusinesseswithAIatthecore—haveseenoutsizedreturnsonAIinvestments.8YetsomelegacybrandshavealsothrivedwithAI.Walmart,forinstance,usesAItomatchitsinventorytoshiftingcustomerneeds.Thebrandtapscustomerandshoppingtrenddatatoanticipatewhereandwhenpeoplewillwantspecificproducts.ThisletsWalmartstockeachwarehousewiththerightitems,stream-lininglogisticsandenablingspeedydelivery,evenduringpeakshopping
seasons.9
Thiscapabilitydidn’tappearovernight.Itwasbuiltonresponsibledatacollectionandcuration,thecreationofflexiblealgorithms,andaholisticapproachtotechnology.Takentogether,theseinitiativesproduceAI-driveninsightsWalmartcantrust.
Walmart,whichhasbeenaleaderindataandanalyticsfordecades,understandsthatAIrequiresmeasurementandoptimizationtoachieveitsfullpotential.ItsabilitytotrackdesiredoutcomesanddiagnosechallengesenablesthecompanytodrivemorevaluefromAI—andbuildascalablecapabilitythatcanbeleveragedacrossmanycurrentandfuturebusinessapplications.
Walmart’ssuccessdemonstratesthat,whileatraditionalenterprisecan’tbecomeadigitalnative,itcantransformtoemulateinbornagility.Companiesthatfocustheireffortsinkeyareas—embeddingAIintocoreoperations—willseebetterresultsthanthosethatspreadthemselvestoothin.
8
DataandAI:
Feedingavirtuouscycle
Datacanclosehalfthegapbetweenaverageandworld-classAIROI.
Tobuildaworld-classAIorganization,onefactorcomesfirst:Howanorganizationchooses,collects,governs,andusesitsdata—thatabundantbutelusiveresource—eitherenablesorconstrainswhatAIcanachieve.
Datahassometimesbeencomparedtooil:avaluableresourcethat’sexpensivetoextractanddifficulttoprocess.Ifdirty,itcanpolluteanentireecosystem.Butwhentappedresponsibly,it’sworthbillions.
That’sbecausereliable,representational,consensualdataisfoundationaltotrustworthyAI.Peoplewon’tuseAIsolutionstheydon’ttrust—andorganizationsthatplacegreaterimportanceonAIethicsreportagreaterdegreeoftrustfromtheircustomersandemployees.10
ItalsohelpsclosetheROIgap.Companieswithhigh“datawealth”aren’tyetattheworld-classlevel,buttheyhavelargestoresofhigh-qualitydata,monetizedataeffectively,andsaytheirdataistrustedbyinternalandexternalstakeholders.Ouranalysisrevealsthattheseattributesdrivehigher-than-averageROIandenablemoreeffectiveAIprojects(seeFigure4).
FIGURE4
Datadifferentiators
Companieswithmoreholisticdata
practicesseebetterbusiness
Datawealthoutperformers
9.0%
outcomes.
Allothers
4.8%
ROIrealizedfromoverall
enterpriseAIcapabilities
EffectivenessofAIprojects47%77%
9
Perspective
Disruptlikeadigitalnative
Lyfthasdisruptedthetransportationindustrywithdata-drivenprocessesthatoptimizebusinessdecisionsandredefinecustomerexperiences.Byleveragingtechnologytotapunmetmarketdemand,itbroke$1billioninrevenueinitsfirstyearofoperation.Bytheendof2022,thatfigurehadtopped$4billion.11
Lyftfocusesonmeetingcustomerneedsinrealtime,usingmachinelearningmodelstomakehundredsofmillionsofdecisionseachday,includingoptimizingrideprices,matchingriderswithdrivers,andpredictingarrivaltimes.12
Makingreal-timeinferenceswithmachinelearningatscalerequiresaccesstoavastamountofdataandcomputationresources,optimizedprocesses,andatalentedteamofdatascientists,engineers,andAIexperts.AndLyfthastonsofinformation:20.3millionactiveridersinQ42022,hundredsofmillionsoftripsperyear.13Thismassivestoreofdatapowersreal-timebusinessdecisionsthatreducecosts,optimizeresources,andstreamlinethecustomerjourney.
10
Ineffect,high-quality,high-value,trusteddataunlockshalfoftheROIimprovementweseeinbest-in-classorganizations.Thatsaid,dataaloneisnotenoughtofullyrealizeAI’spotential.Whiledataquality,quantity,robustness,value,andtrustareallimportant,howbusinessesharnessdatahasabiggercumulativeimpactonROIthanwhatdatatheyhave.
Today’stop-performingChiefDataOfficers(CDOs)specializeingettingvaluefromtheirorganization’sdata.Anelitegroup—just8%ofCDOsinIBV’smostrecentsurveyofdataleaders—reapmorevaluethanpeerswhilespendingless.14What’skeyishowtheyuseAItoimprovetheirdata:ThreeoutoffoursaythatapplyingAItotheirdatahelpsthemmakefasterandbetterbusinessdecisions.
So,it’snotjustaboutusingdatatoimproveAI—AIcanalsohelpcompaniesmakebetteruseofdata.It’savirtuouscycle.AsMircoBharpalania,SeniorDirectorofCrossDomainSolutionsfortheLufthansaGroupsaid,“AIissocriticalbecauseitactuallyopensuptheworldofthedatathatwe’resittingon.”15
11
Sixkeycapabilitiesthatenableworld-classresults
Whatenablessomeorganizationstoachieveworld-classROIfromtheirAIinvestments?Howdotheyamplifyhigh-quality,trusteddatatounlockfinancialandbusinessvalue?
Toanswerthesequestions,wecarefullyanalyzedourstudyresults,lookingforpatterns,insights,andapplicablereal-worldlessons.Welearnedthatbest-in-classAIperformersbuildcapabilitiesacrosssixkeyareas,inaholistic,integratedway—withtrustatthecore(seeFigure5):
–Visionandstrategy
–AIoperatingmodel
–AIengineeringandoperations
–Dataandtechnology
–Talentandskills
–Cultureandadoption
12
Trust
Talentandskills
Deployanenterprise-wideapproachtodevelopAIethics,skills,andtalent
Cultureandadoption
AIengineeringandoperations
Developahuman-centeredapproachtoAI—withdynamic,openfeedbackloopsacrosstheecosystem
FIGURE5
Becomingbest-in-class
CompaniesthatseethehighestROI
fromAIhavematured6keycapabilities—
withtrustatthecore.
6key
capabilities
Dataandtechnology
Buildcorecapabilitiesthatsimplify,automate,control,andsecureaccesstodata
Visionandstrategy
IdentifywhereAIcanboostcompetitiveness,innovation,andperformance—andprioritizeaccordingly
forhigh
AIROI
AIoperatingmodel
EmbedanAIoperatingmodel
intothefabricandcultureofthe
organization
DeployAIsolutionsthatare
flexible,user-friendly,and
scalable
13
#1Visionandstrategy
Don’tthrowAIateverything
ApplyingAI,automation,oranyothertechnologytopoorlydesignedprocessesstilldeliverssubparoutcomes.Byassessingwherestrategicinvestmentisplannedforcoreandnon-corefunctions(forexample,customerservice,marketing,supplychain,finance,andsoforth),aswellasbusinessunits,leaderscanuncoverstrategicopportunitiestoembedAI.
Awell-thought-outAIstrategycancatalyzetransfor-mationeffortsandincreasetheROIofindividualAIprojects(see“BostonScientificspends$50,000tosave$5million,”page15).Accordingtoourresearch,organizationsthatviewAIasimportanttotheirbusinessstrategyare1.8timesmorelikelytobeeffectivewiththeirAIinitiativesandachievenearlytwicetheROI(seeFigure6).
Leadersalsobalancecompetitivedifferentiationwithcostoptimization.Someareevenleveragingpubliclyavailableandopen-sourceAIresourcestodeliverfaster,cheaper,andmorescalablesolutionstomarket(see“FoundationmodelslaythegroundworkforAI’sfuture,”page14).EthicalquestionsabouthowthesetoolshavebeentrainedwillalsoplayapartinAI’sfuture—socompaniesneedtodefinewheretheystandbeforetheypushtoofarforward.
FIGURE6
Strategycomesfirst
CompaniesthatuseAIto
advancestrategyseenearly
twicetheROI.
8%
1.7x
more
7%
AIISimportantintheareaofenterprise/businessstrategy
8.0%
6%
5%
4%
AIisNOTimportantintheareaofenterprise/businessstrategy
4.7%
3%
2%
1%
0%
ROIrealizedfromoverall
enterpriseAIcapabilities
14
Perspective
Foundationmodels
laythegroundwork
forAI’sgenerative
future
AIisgettingsmarterandfastereveryday.Butmostsolutionsarestillbespoke.They’retrainedusingaspecificdatasettocompleteapre-definedtask—aprocessthatisbothenergy-intensiveandtime-consuming.16
TomakeAIinvestmentsmorecost-effective,companiesneedflexible,reusablemodelsthatcanbeappliedinavarietyofways—includinggeneratingnewcontent.Today’sfoundationmodelsarepavingapathtowardthisfuture.
TheyofferanopportunitytoaccelerateandscaleAIadoption,asfoundationmodelscan,intheory,beappliedtomanydomains.Forexample,LLMscantransformhowinformationisgeneratedandsharedacrossanorganization.Itjustneedstobeadaptedforsemanticsearch,classification,prediction,summarization,andtranslation.
TheadoptionoffoundationmodelsisalsosupportedbyasetofemergingAIengineeringbestpracticesthathavegonemainstream.Frommodeldevelopmenttopromptengineering,thesecommonpracticesandapproachesstreamlinecollaborationacrosstheenterprise—andtheecosystem.AsetoflayeredstacksandAIarchitectureswithstrongopensource,ecosystem,andresearchcontributionsarealsogivingrisetocommon,re-usabledevelopmentanddeploymentapproaches.
Whilefoundationmodelsofferrealpromiseandpotential,theyalsocomewithnewchallenges.Forone,theyrequiresignificantcompute,storage,andnetworkresources,whichmakesthemenergyintensive.Trainingonelargenaturallanguageprocessingmodelhasroughlythesamecarbonfootprintasrunningfivecarsovertheirlifetime.17
ItisalsoimportanttoconsiderhowtheusagescaleofafoundationmodelinfluencesROI.ALLMthatistrainedtoservehundredsofmillionsofusersmaydelivermorevaluefasterthanamodelthatisusedbyonlythousands.Inasmallerscaledeployment,optimization,fine-tuning,specialization,andportabilitymaynottranslatetonear-termreturns—eventhoughtheLLMcanbeusedformanydownstreamtasks.
Otherchallengesthatcomewithlargermodelsincludetrustworthiness,explainability,andtransparency.Addressingtheseissuesrequiresadditionaleffort,investmentand,insomecases,newinventionsandsolutions.Teamsmustunderstandwhatlargemodelscando,howtheyshouldbedeployed,andwhattypeofdatacurationisrequired.Broaderdataengineeringskillswillbecritical—aswillaseriousfocusonethicalissues.
Likeanyotherdisruptivetechnology,therearetrade-offsthatcomewithadoptinggenerativeAIandfoundationmodels.Successwillonlycomefromexperimentationanditeration.Especiallyforenterprises,thisjourneywillinvolvebalancingthescalesbetweenthevaluegenerativeAIcancreateandtheinvestmentitdemands.ThefutureofAIwillbedefinedbythosewhohittherightmark.
Casestudy
BostonScientific
spends$50,000to
save$5million
BostonScientificwantedtoautomateitsstentinspectionprocesstoimproveaccuracywhensearchingfordefects,suchasbrokenlinksorsurfaceimperfec-tions.Accurateinspectionsarecriticalforsuccessfulclinicaloutcomes.18
Thecompanyhasapproximately3,000expertsdoinginspections,costingseveralmilliondollarseachyear.BostonScientificconsideredaneuralnetworkmodeltohelpcutbackonmanuallabor,butthosemodelsrequiremuchmoredatathanithadonhand.Andcollectingorgeneratingthisdatawouldbeimpracticalandcostprohibitive.
Thesolution?First,teamsscaleddowntheproblembyfocusingonsmallerandnarrowertasks.Then,theyreduceddatarequirementstoalignwiththenewfocus.Lastly,theyleveraged“off-the-shelf”open-sourceAImodelstostreamlinetheinspectionprocess.
Theresult?$5millionindirectsavings—deliveredonamodestbudgetofroughly$50,000—aswellasincreasedaccuracy.Nowthecompany’semployeescanidentifyissuesfasterandfocusontheimportantworkthatonlyhumanscando.
15
16
#2Operatingmodel
Ditchthesciencefairmentality
GroundbreakingAIisbuiltonafoundationofopeninnovation.However,leadingcompanieslearntomitigateagainstthemyththatanythinggoesininnovation.19Tokeepexperimentsandimplementa-tionsinlinewithstrategy,organizationsmusttreatAIasadiscipline.Theymustoutlineethicalprinciples,developrigorousgovernance,andemphasizepragmatismovertheory.
ThisstartswithunderstandingwhichAIoperatingmodelbestalignswiththebusinessneed(forexample,centralizedversushub-and-spokeversusdecentralizedstructures).OurresearchfindsthatorganizationswithhighdatawealththathavealsoembeddedanAIoperatingmodelintothefabricandcultureoftheorganizationareabletogenerateupto2.6timesmoreROIthantheirpeers.20
Whatdoesthislooklike?Oneexamplerevolvesaroundhowcompaniescreateminimumviableproducts(MVPs).LeadersshouldoutlineaclearprocessforapplyingAI—startingwithidentifyingthebusinessproblemthesolutionhopestosolve.Bysettingcleargoalsforevenexperimentalrollouts,companiescanchoosetoadvanceonlythemosteffectiveAIprojects.
#3Engineeringandoperations
AgileDevOps+automatedITOps+MLOps=AIOps
AIengineeringandoperations(AIOps)bringsbigideastolife,servingasaflywheelfortheoperatingmodel.Itintegratespeople,processes,andplatformstoapplyAIatspeedandscale(see“BestsellerunlocksAIvalueinfastfashion,”page17).Andorganizationsthatsuccessfullydesignprocessesthathelpteamsbuildtoscale—whilealsomonitoringtheperformanceofAIapplications—seeupto2.6timeshigherROI.
EngineeringdisciplinecanacceleratethisAIflywheelandmakeitworkeffectively.JustasmanycompaniesuseDevOpsandothersoftwareengineeringapproachestospeedupprojectswithoutsacrificingquality,AIOpshelpsshortendevelopmentcycles,improvecollaboration,increaseoperationalefficiency,anddeploysolutionsmoresuccessfully.21Standardizationandstructuredfocusareessentialtokeepupwiththepaceofinnovation—withoutsacrificingtheprinciplesofethicalAI.
Casestudy
BestsellerunlocksAIvalueinfastfashion
Inthefashionindustry,around80%ofmerchandiseissoldacrosstwoseasonseachyear.Everythingelseishighlydiscounted—orgetsdonatedordumped.Thisover-productiontranslatestosuboptimalprofitsandpresentsanenormoussustainabilityissueforclothingdesignersandretailers.22
Tohelpteamsmoreaccuratelypredictdemand,clothingandaccessorycompanyBestsellertook10,000images(oneseason’scatalog)anddevelopedanAImodelforeachofitsfourbrands.Injustthreeweeks,thecompanywasabletodevelopandtrainaconvolutionalneuralnetworktoclassifyanimageaccordingtovariousfeatures.Deep-learningdetailswerethenfedintotraditionalanalysismodels(forexample,regressionorprincipalcomponentanalysis)tohelpthecompanybetterunderstandthefactorsthatdrivesales.
IncorporatingthisinformationintoBestseller’scoreforecastingengineincreasedthecompany’ssellingefficiencyfrom78%to82%—andreducedthenumberofdesignsamplesitneededtocreateforeachbrandby15%.
#4Dataandtechnology
Supportindustrial-strengthscaling
Anyonecancreateaproofofconcept.ButforAImodelstobeeffective,useful,andtrustworthy,theymustbeproperlyintegratedintooperationalsystems.WhatacompanycandowithAIisdefined,inlargepart,byhowitselects,governs,analyzes,andappliesdataacrosstheenterprise.Becausehumansarefallible,teamsneedskillsandprocessesthathelpensuretherightdataischosentopowerAImodels.
ThisalsohasamajorimpactonAI’sROI.At
world-classorganizations,datateamsreviewgovernance,management,ethics,literacy,andotherframeworksneededforpeopletoaccess,understand—andtrust—enterprisedata.ITteamsassessinfrastructureandprocessestobalanceAI
experimentationwithindustrial-strengthscaling(see“HowIBM’sChiefAnalyticsOfficerhelpsboostAIROI,”page18).
17
EveryonehasbigideasforAI.TheofficeofIBM’sChiefAnalyticsOfficer(CAO)helpsthosevisionsbecomereality.
TheCAOofficepartnerswithbusinessunitswithinIBMtoidentifyopportunitiestoimproverevenue,savetime,andaddalayerofintelligencetoday-to-daybusinessworkflowswithmachinelearnin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級工程師面試題集及答案解析
- 2026年高校教師資格證之高等教育心理學考試題庫及答案(基礎+提升)
- 2026年二級注冊建筑師之建筑結構與設備考試題庫500道含答案(培優(yōu))
- 2026年企業(yè)人力資源管理師之二級人力資源管理師考試題庫500道及答案【歷年真題】
- 青霉素皮試過敏的急救護理
- 企業(yè)新年晚會致辭4篇
- 2026年及未來5年市場數(shù)據(jù)中國高鉻球行業(yè)發(fā)展前景預測及投資戰(zhàn)略數(shù)據(jù)分析研究報告
- 制造業(yè)綠色供應鏈管理中的環(huán)境風險識別與防控策略研究與應用教學研究課題報告
- 金融行業(yè)客服面試題與解答指南
- 人力資源服務專員績效考核試題
- 1688采購合同范本
- 購買鐵精粉居間合同范本
- GB/T 29730-2025冷熱水用分集水器
- 污水廠安全知識培訓
- (2025年標準)存單轉讓協(xié)議書
- 醫(yī)學科研誠信專項培訓
- 電力通信培訓課件
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導原則
- 軟骨肉瘤護理查房
- 高級生物化學知識要點詳解
評論
0/150
提交評論