利用人工智能生成投資回報率:推動世界一流結果的六大能力++Generating+ROI++with+AI:Six+Capabilities+That+Drive++World-Class+Results_第1頁
利用人工智能生成投資回報率:推動世界一流結果的六大能力++Generating+ROI++with+AI:Six+Capabilities+That+Drive++World-Class+Results_第2頁
利用人工智能生成投資回報率:推動世界一流結果的六大能力++Generating+ROI++with+AI:Six+Capabilities+That+Drive++World-Class+Results_第3頁
利用人工智能生成投資回報率:推動世界一流結果的六大能力++Generating+ROI++with+AI:Six+Capabilities+That+Drive++World-Class+Results_第4頁
利用人工智能生成投資回報率:推動世界一流結果的六大能力++Generating+ROI++with+AI:Six+Capabilities+That+Drive++World-Class+Results_第5頁
已閱讀5頁,還剩57頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

IBMInstituteforBusinessValue|ResearchInsights

GeneratingROI

withAI

Sixcapabilitiesthatdrive

world-classresults

HowIBM

canhelp

ClientscanrealizethepotentialofAI,analytics,anddatausingIBM’sdeepindustry,functional,andtechnicalexpertise;enterprise-gradetechnologysolutions;andscience-basedresearchinnovations.

FormoreinformationaboutAIservicesfromIBMConsulting,visit

/services/artificial-intelligence

FormoreinformationaboutAIsolutionsfromIBMSoftware,visit

/Watson

FormoreinformationaboutAIinnovationsfromIBMResearch?,visit

/artificial-intelligence

2

1

Key

takeaways

Maturecapabilities

differentiatetheAIprojects

thatdeliverthehighestROI.

MostAIprojectsaren’t

profitableenough—yet.

AsAImatures,ROIonenterprise-wideinitiativesaveragedonly5.9%,wellbelowthetypical10%costofcapital.

Dataiscrucial—butonly

onepieceofthepuzzle.

Buildingontrusted,high-qualitydataatscaleboostedreturnsonAIinvestmentstoasmuchas9%.

Companiescanstrike

goldwiththerightapproach.

Best-in-classcompaniesthathavebuiltsixmaturecapabilitiesreportedaverageROIof13%onAIprojects.

2

3

AlleyesareonAI

CantheROIofAImatchthehype?

Artificialintelligenceissuddenlysexy—again.

GenerativeAIhastakenthebusinessworldbystorm,withlargelanguagemodels(LLMs)suchasOpenAI’sChatGPT,Baidu’sERNIE,Google’sLaMDAandFacebook’sLLaMAsplashedacrossthenews.Andexecutivesaren’timmunetothehype.ReferencestoAIonearningscallswereup77%year-over-yearinearly2023.1

Andthemoneyisfollowing.AIisbecominganever-largercomponentofITbudgets,withworldwidespendingonAI-centricsystemsexpectedtohit$154billionthisyear—up27%over2022.2

Butwillenterprisesspendtheseresourceswisely?AsAImodelsbecomefaster,smarter,andmorereliable,organizationsareracingtocapitalize.Canthereturnoninvestment(ROI)matchexpectations?

Theanswer:Yes—butonlyiforganizationstakeadisciplinedapproach.Tocometothisconclusion,wesurveyed2,500globalexecutivesin34businessandtechnologyrolesacross16countriesfromallmajorregions.WeaskedthemtodeconstructhowtheircompaniesareinvestinginAItoday,whatreal-worldROIisbeingproduced,andwhichelementsarerequiredtoboosteffectiveness.InpartnershipwithOxfordEconomics,wethenanalyzedwhatkeybusinessandtechnologycapabilitiesareconnectedtothemostsuccessfulAIinitiatives.(See“Studyapproachandmethodology”onpage31.)

4

6%

5%

4%

3%

2%

1%

0%

Companiesthatdevelopmature

AIcapabilitieswillgenerateprofits—

notjustmediabuzz.

OurfindingsrevealyawningoutcomegapsacrossAIprojects.Fewdeliverthefinancialvalueshareholdersexpect.Infact,averageROIonenterprise-wideinitiativesisjust5.9%,wellbelowthetypical10%costofcapital.Yet,therearedistinctimprovementsasyoumovealongtheAImaturitycontinuum—withbest-in-classcompaniesreapinganenviable13%ROI(seeFigure1).

Sowhatsetstheseworld-classperformersapart?Andhowcanleadersacrosssectorslearnfromtheirsuccess?Thisreportwilloutline:

–WhyadhocAIprojectsdeliverlessvaluethanstrategicprograms

–TheimpactoftrusteddataandthevirtuouscycleofAI-datasymbiosis

–Sixkeycapabilitiesthatdefineandenabletop-tierorganizations.

BuildingamatureAIorganization—onasolidfoundationoftrust—isrequiredtounlockAI’sfullpotential.Companiesthatgetitrightaregeneratingsignificantbusinessvalue—notjustmediabuzz.

FIGURE1

Acutabovetherest

Best-in-classcompanies

deliverAIROIthatexceeds

theircostofcapital.

AIRoI

14%

13%

13%

30%

12%

more

10%

Averagecostofcapitalforcompanies

~10%

9%

8%

7%

5.9%

AverageROIofallorganizations

AverageROIfortop10%oforganizations

5

BeyondopportunisticAI

Asorganizations

figureoutwhere

andhowtodeploy

AI,boldbets

translateto

biggergains.

OrganizationshavebeenbettingonAIforthebetterpart

ofadecade—andthelearningcurvehasbeensteep.3

Somegotcaughtupinthe“wowfactor”ofthetechnology,forgettingtoalignprojectstostrategy.OtherssawAIasahammer,andeverybusinessproblemanail.Almostallstruggledtoscaletheirimplementationsbeyondexperiments,proofsofconcepts,andpilots.

Thegoodnewsfromourresearch:Manyorganizationshaveturnedacorner.AIrolloutsaremoresuccessfulthanever,withmorethantwiceasmanyexecutivessayingtheirorganizationusedAIeffectivelyin2021(54%)thanin2020(25%).TheyalsoexpectAIinvestmenttogrowto6.5%ofITspendby2024.

Overall,returnoninvestmenthasbeenrisingsteadilysince2020.Forenter-prise-wideAIinitiatives,averageROIhasgrownfromjustover1%inearly2020tonearly6%bytheendof2021.4ThiscouldbearesultofthepandemicpushingorganizationstoinvestinAI-drivensolutionsthatwouldexpediteremoteworking,enhancetheuserexperience,anddecreasecosts.

TogaugewhetherAIROIhaskeptpacewiththistrend,wesurveyedmorethan350executivesagaininAprilandMay2023.WefoundthatAIROIhascontinuedontheexpectedgrowthtrajectory,reachinganestimated8.3%in2022(seeFigure2).5

6

10%

Still,thesereturnsarelowerthanthecostofcapital,whichistypically10%acrossmostindustries.Overall,fewerthanoneinfourorganizationsinoursurveysaythey’veachievedAIROIhigherthan10%.

Inessence,AIisfollowingthe“J-curve”patterntypicalfortransformativetechnologies.6Adoptingemergingtechatscalerequiresreimaginingbusinessmodels,workflows,skills,andmanyotherfacetsofbusiness.Returnsoftenstagnatewhileteamsworkoutthekinks.Yet,ascapabilitiesmature,performancecanrisequickly.Inthisenvironment,enterprisesneedtohaveastrategicplanforscalingtheimpactofAIovertime.

FIGURE2

Returnsareontherise

ROIfromAIprojectsgrew

morethan6timesbetween

2020and2022.

AIRoI

9%

8%

7%

6%

5%

4%

3%

2%

1%

0%

8.3%

5.9%

21%

13%

Early2021

2022

(estimated)

2020

Late

2021

Source:2020:Deloitte/ESLAIsurvey;Early2021:IBVAIethics

survey;Late2021:IBVAIcapabilitysurvey;2022:IBVgenerativeAI

pulsesurvey,April-May2023.

7

OuranalysisrevealshowROIimprovesacrossacontinuumofAImaturity(seeFigure3).Theaverageenterprise,whichpursuesadhocand/oropportu-nisticAIinitiatives,isthelaggard.In2021,thosethatintentionallyembeddedAIinproducts,services,businessunits,andfunctionssawROIclimbabove7%.Asmaturityextendedastepfurther,withAIdeployedaspartofastrategicbusinesstransfor-mation,returnsimprovedagain,to8%.

AsorganizationsfigureoutwhereandhowtodeployAI,boldbetstranslateintobiggerandbiggergains.Atthetopofthecurveisourbest-in-classcategory,reportinganaverageROIof13%.Bytakingasteady,balancedapproachtoadoptingAI—whichincludesbuildingdataandanalyticsskills,developingamultidisciplinaryapproach,creatingdiverseteams,andtrainingteamsthroughAICentersofExcellence(CoEs)—they’vedevelopedcomprehensivecapabilitiesthroughouttheenterprise.

FIGURE3

AI-centricstrategiesboostROI

AligningAIwithbusinessprioritiesyields

muchhigherROIthanadhocprojects.

Product

embedded

Newbusiness

modelenabler

Organicgrowth,

innovation,and

differentiation

Transformation

andplatform

strategy

EmbeddingAIintocoreproducts

UsingAItohelpachieveplatformeconomics

AIstrategiccontinuum

Horizontallydeployed

Verticallyintegrated

Customer/operationaleffectiveness

Opportunistic

Customer/

operational

effectiveness

DeployingAIinto

functions

Adhoc

Strategic

importanceofAI

Varied

IntegratingAIwithinbusinessunit(s)

Companytypes

ROIof4.7%7.2%7.4%8.0%

organizations

Perspective

FromAlphabet

toWalmart:

Becomingan

AI-firstbusiness

Legacyenterprisesarelikeindustrial-eracities.They’reconnectedbywindingcorridorsthatgreworganicallyratherthanstraight,efficientavenues.Theyfacepersistentchallengeswithmodernization,asprogressisoftenhinderedbycentury-oldinfrastructure.

AI-firstcompaniesstartwithacleansheetofpaper.Leaderscanbemorecreative,moreflexible—andmakeemergingtechnologiescentraltothebusinessmodel.“Ihaven’tencountereddigitalnativeswhosay,‘I’mgoingtoinnovate.’Ionlyhearthosestatementsfromlegacyorganizations,becausethey’retryingtogetoutofthatrut,”saidRaviSimhambhatla,ChiefDigitalOfficeratAvisBudgetGroup,inarecentIBVreport.“Fordigitalnatives,it’sallaboutdisruptingthemselves.”7

Digitalnatives,suchasAlphabet,Netflix,Amazon,andMeta—high-growthbusinesseswithAIatthecore—haveseenoutsizedreturnsonAIinvestments.8YetsomelegacybrandshavealsothrivedwithAI.Walmart,forinstance,usesAItomatchitsinventorytoshiftingcustomerneeds.Thebrandtapscustomerandshoppingtrenddatatoanticipatewhereandwhenpeoplewillwantspecificproducts.ThisletsWalmartstockeachwarehousewiththerightitems,stream-lininglogisticsandenablingspeedydelivery,evenduringpeakshopping

seasons.9

Thiscapabilitydidn’tappearovernight.Itwasbuiltonresponsibledatacollectionandcuration,thecreationofflexiblealgorithms,andaholisticapproachtotechnology.Takentogether,theseinitiativesproduceAI-driveninsightsWalmartcantrust.

Walmart,whichhasbeenaleaderindataandanalyticsfordecades,understandsthatAIrequiresmeasurementandoptimizationtoachieveitsfullpotential.ItsabilitytotrackdesiredoutcomesanddiagnosechallengesenablesthecompanytodrivemorevaluefromAI—andbuildascalablecapabilitythatcanbeleveragedacrossmanycurrentandfuturebusinessapplications.

Walmart’ssuccessdemonstratesthat,whileatraditionalenterprisecan’tbecomeadigitalnative,itcantransformtoemulateinbornagility.Companiesthatfocustheireffortsinkeyareas—embeddingAIintocoreoperations—willseebetterresultsthanthosethatspreadthemselvestoothin.

8

DataandAI:

Feedingavirtuouscycle

Datacanclosehalfthegapbetweenaverageandworld-classAIROI.

Tobuildaworld-classAIorganization,onefactorcomesfirst:Howanorganizationchooses,collects,governs,andusesitsdata—thatabundantbutelusiveresource—eitherenablesorconstrainswhatAIcanachieve.

Datahassometimesbeencomparedtooil:avaluableresourcethat’sexpensivetoextractanddifficulttoprocess.Ifdirty,itcanpolluteanentireecosystem.Butwhentappedresponsibly,it’sworthbillions.

That’sbecausereliable,representational,consensualdataisfoundationaltotrustworthyAI.Peoplewon’tuseAIsolutionstheydon’ttrust—andorganizationsthatplacegreaterimportanceonAIethicsreportagreaterdegreeoftrustfromtheircustomersandemployees.10

ItalsohelpsclosetheROIgap.Companieswithhigh“datawealth”aren’tyetattheworld-classlevel,buttheyhavelargestoresofhigh-qualitydata,monetizedataeffectively,andsaytheirdataistrustedbyinternalandexternalstakeholders.Ouranalysisrevealsthattheseattributesdrivehigher-than-averageROIandenablemoreeffectiveAIprojects(seeFigure4).

FIGURE4

Datadifferentiators

Companieswithmoreholisticdata

practicesseebetterbusiness

Datawealthoutperformers

9.0%

outcomes.

Allothers

4.8%

ROIrealizedfromoverall

enterpriseAIcapabilities

EffectivenessofAIprojects47%77%

9

Perspective

Disruptlikeadigitalnative

Lyfthasdisruptedthetransportationindustrywithdata-drivenprocessesthatoptimizebusinessdecisionsandredefinecustomerexperiences.Byleveragingtechnologytotapunmetmarketdemand,itbroke$1billioninrevenueinitsfirstyearofoperation.Bytheendof2022,thatfigurehadtopped$4billion.11

Lyftfocusesonmeetingcustomerneedsinrealtime,usingmachinelearningmodelstomakehundredsofmillionsofdecisionseachday,includingoptimizingrideprices,matchingriderswithdrivers,andpredictingarrivaltimes.12

Makingreal-timeinferenceswithmachinelearningatscalerequiresaccesstoavastamountofdataandcomputationresources,optimizedprocesses,andatalentedteamofdatascientists,engineers,andAIexperts.AndLyfthastonsofinformation:20.3millionactiveridersinQ42022,hundredsofmillionsoftripsperyear.13Thismassivestoreofdatapowersreal-timebusinessdecisionsthatreducecosts,optimizeresources,andstreamlinethecustomerjourney.

10

Ineffect,high-quality,high-value,trusteddataunlockshalfoftheROIimprovementweseeinbest-in-classorganizations.Thatsaid,dataaloneisnotenoughtofullyrealizeAI’spotential.Whiledataquality,quantity,robustness,value,andtrustareallimportant,howbusinessesharnessdatahasabiggercumulativeimpactonROIthanwhatdatatheyhave.

Today’stop-performingChiefDataOfficers(CDOs)specializeingettingvaluefromtheirorganization’sdata.Anelitegroup—just8%ofCDOsinIBV’smostrecentsurveyofdataleaders—reapmorevaluethanpeerswhilespendingless.14What’skeyishowtheyuseAItoimprovetheirdata:ThreeoutoffoursaythatapplyingAItotheirdatahelpsthemmakefasterandbetterbusinessdecisions.

So,it’snotjustaboutusingdatatoimproveAI—AIcanalsohelpcompaniesmakebetteruseofdata.It’savirtuouscycle.AsMircoBharpalania,SeniorDirectorofCrossDomainSolutionsfortheLufthansaGroupsaid,“AIissocriticalbecauseitactuallyopensuptheworldofthedatathatwe’resittingon.”15

11

Sixkeycapabilitiesthatenableworld-classresults

Whatenablessomeorganizationstoachieveworld-classROIfromtheirAIinvestments?Howdotheyamplifyhigh-quality,trusteddatatounlockfinancialandbusinessvalue?

Toanswerthesequestions,wecarefullyanalyzedourstudyresults,lookingforpatterns,insights,andapplicablereal-worldlessons.Welearnedthatbest-in-classAIperformersbuildcapabilitiesacrosssixkeyareas,inaholistic,integratedway—withtrustatthecore(seeFigure5):

–Visionandstrategy

–AIoperatingmodel

–AIengineeringandoperations

–Dataandtechnology

–Talentandskills

–Cultureandadoption

12

Trust

Talentandskills

Deployanenterprise-wideapproachtodevelopAIethics,skills,andtalent

Cultureandadoption

AIengineeringandoperations

Developahuman-centeredapproachtoAI—withdynamic,openfeedbackloopsacrosstheecosystem

FIGURE5

Becomingbest-in-class

CompaniesthatseethehighestROI

fromAIhavematured6keycapabilities—

withtrustatthecore.

6key

capabilities

Dataandtechnology

Buildcorecapabilitiesthatsimplify,automate,control,andsecureaccesstodata

Visionandstrategy

IdentifywhereAIcanboostcompetitiveness,innovation,andperformance—andprioritizeaccordingly

forhigh

AIROI

AIoperatingmodel

EmbedanAIoperatingmodel

intothefabricandcultureofthe

organization

DeployAIsolutionsthatare

flexible,user-friendly,and

scalable

13

#1Visionandstrategy

Don’tthrowAIateverything

ApplyingAI,automation,oranyothertechnologytopoorlydesignedprocessesstilldeliverssubparoutcomes.Byassessingwherestrategicinvestmentisplannedforcoreandnon-corefunctions(forexample,customerservice,marketing,supplychain,finance,andsoforth),aswellasbusinessunits,leaderscanuncoverstrategicopportunitiestoembedAI.

Awell-thought-outAIstrategycancatalyzetransfor-mationeffortsandincreasetheROIofindividualAIprojects(see“BostonScientificspends$50,000tosave$5million,”page15).Accordingtoourresearch,organizationsthatviewAIasimportanttotheirbusinessstrategyare1.8timesmorelikelytobeeffectivewiththeirAIinitiativesandachievenearlytwicetheROI(seeFigure6).

Leadersalsobalancecompetitivedifferentiationwithcostoptimization.Someareevenleveragingpubliclyavailableandopen-sourceAIresourcestodeliverfaster,cheaper,andmorescalablesolutionstomarket(see“FoundationmodelslaythegroundworkforAI’sfuture,”page14).EthicalquestionsabouthowthesetoolshavebeentrainedwillalsoplayapartinAI’sfuture—socompaniesneedtodefinewheretheystandbeforetheypushtoofarforward.

FIGURE6

Strategycomesfirst

CompaniesthatuseAIto

advancestrategyseenearly

twicetheROI.

8%

1.7x

more

7%

AIISimportantintheareaofenterprise/businessstrategy

8.0%

6%

5%

4%

AIisNOTimportantintheareaofenterprise/businessstrategy

4.7%

3%

2%

1%

0%

ROIrealizedfromoverall

enterpriseAIcapabilities

14

Perspective

Foundationmodels

laythegroundwork

forAI’sgenerative

future

AIisgettingsmarterandfastereveryday.Butmostsolutionsarestillbespoke.They’retrainedusingaspecificdatasettocompleteapre-definedtask—aprocessthatisbothenergy-intensiveandtime-consuming.16

TomakeAIinvestmentsmorecost-effective,companiesneedflexible,reusablemodelsthatcanbeappliedinavarietyofways—includinggeneratingnewcontent.Today’sfoundationmodelsarepavingapathtowardthisfuture.

TheyofferanopportunitytoaccelerateandscaleAIadoption,asfoundationmodelscan,intheory,beappliedtomanydomains.Forexample,LLMscantransformhowinformationisgeneratedandsharedacrossanorganization.Itjustneedstobeadaptedforsemanticsearch,classification,prediction,summarization,andtranslation.

TheadoptionoffoundationmodelsisalsosupportedbyasetofemergingAIengineeringbestpracticesthathavegonemainstream.Frommodeldevelopmenttopromptengineering,thesecommonpracticesandapproachesstreamlinecollaborationacrosstheenterprise—andtheecosystem.AsetoflayeredstacksandAIarchitectureswithstrongopensource,ecosystem,andresearchcontributionsarealsogivingrisetocommon,re-usabledevelopmentanddeploymentapproaches.

Whilefoundationmodelsofferrealpromiseandpotential,theyalsocomewithnewchallenges.Forone,theyrequiresignificantcompute,storage,andnetworkresources,whichmakesthemenergyintensive.Trainingonelargenaturallanguageprocessingmodelhasroughlythesamecarbonfootprintasrunningfivecarsovertheirlifetime.17

ItisalsoimportanttoconsiderhowtheusagescaleofafoundationmodelinfluencesROI.ALLMthatistrainedtoservehundredsofmillionsofusersmaydelivermorevaluefasterthanamodelthatisusedbyonlythousands.Inasmallerscaledeployment,optimization,fine-tuning,specialization,andportabilitymaynottranslatetonear-termreturns—eventhoughtheLLMcanbeusedformanydownstreamtasks.

Otherchallengesthatcomewithlargermodelsincludetrustworthiness,explainability,andtransparency.Addressingtheseissuesrequiresadditionaleffort,investmentand,insomecases,newinventionsandsolutions.Teamsmustunderstandwhatlargemodelscando,howtheyshouldbedeployed,andwhattypeofdatacurationisrequired.Broaderdataengineeringskillswillbecritical—aswillaseriousfocusonethicalissues.

Likeanyotherdisruptivetechnology,therearetrade-offsthatcomewithadoptinggenerativeAIandfoundationmodels.Successwillonlycomefromexperimentationanditeration.Especiallyforenterprises,thisjourneywillinvolvebalancingthescalesbetweenthevaluegenerativeAIcancreateandtheinvestmentitdemands.ThefutureofAIwillbedefinedbythosewhohittherightmark.

Casestudy

BostonScientific

spends$50,000to

save$5million

BostonScientificwantedtoautomateitsstentinspectionprocesstoimproveaccuracywhensearchingfordefects,suchasbrokenlinksorsurfaceimperfec-tions.Accurateinspectionsarecriticalforsuccessfulclinicaloutcomes.18

Thecompanyhasapproximately3,000expertsdoinginspections,costingseveralmilliondollarseachyear.BostonScientificconsideredaneuralnetworkmodeltohelpcutbackonmanuallabor,butthosemodelsrequiremuchmoredatathanithadonhand.Andcollectingorgeneratingthisdatawouldbeimpracticalandcostprohibitive.

Thesolution?First,teamsscaleddowntheproblembyfocusingonsmallerandnarrowertasks.Then,theyreduceddatarequirementstoalignwiththenewfocus.Lastly,theyleveraged“off-the-shelf”open-sourceAImodelstostreamlinetheinspectionprocess.

Theresult?$5millionindirectsavings—deliveredonamodestbudgetofroughly$50,000—aswellasincreasedaccuracy.Nowthecompany’semployeescanidentifyissuesfasterandfocusontheimportantworkthatonlyhumanscando.

15

16

#2Operatingmodel

Ditchthesciencefairmentality

GroundbreakingAIisbuiltonafoundationofopeninnovation.However,leadingcompanieslearntomitigateagainstthemyththatanythinggoesininnovation.19Tokeepexperimentsandimplementa-tionsinlinewithstrategy,organizationsmusttreatAIasadiscipline.Theymustoutlineethicalprinciples,developrigorousgovernance,andemphasizepragmatismovertheory.

ThisstartswithunderstandingwhichAIoperatingmodelbestalignswiththebusinessneed(forexample,centralizedversushub-and-spokeversusdecentralizedstructures).OurresearchfindsthatorganizationswithhighdatawealththathavealsoembeddedanAIoperatingmodelintothefabricandcultureoftheorganizationareabletogenerateupto2.6timesmoreROIthantheirpeers.20

Whatdoesthislooklike?Oneexamplerevolvesaroundhowcompaniescreateminimumviableproducts(MVPs).LeadersshouldoutlineaclearprocessforapplyingAI—startingwithidentifyingthebusinessproblemthesolutionhopestosolve.Bysettingcleargoalsforevenexperimentalrollouts,companiescanchoosetoadvanceonlythemosteffectiveAIprojects.

#3Engineeringandoperations

AgileDevOps+automatedITOps+MLOps=AIOps

AIengineeringandoperations(AIOps)bringsbigideastolife,servingasaflywheelfortheoperatingmodel.Itintegratespeople,processes,andplatformstoapplyAIatspeedandscale(see“BestsellerunlocksAIvalueinfastfashion,”page17).Andorganizationsthatsuccessfullydesignprocessesthathelpteamsbuildtoscale—whilealsomonitoringtheperformanceofAIapplications—seeupto2.6timeshigherROI.

EngineeringdisciplinecanacceleratethisAIflywheelandmakeitworkeffectively.JustasmanycompaniesuseDevOpsandothersoftwareengineeringapproachestospeedupprojectswithoutsacrificingquality,AIOpshelpsshortendevelopmentcycles,improvecollaboration,increaseoperationalefficiency,anddeploysolutionsmoresuccessfully.21Standardizationandstructuredfocusareessentialtokeepupwiththepaceofinnovation—withoutsacrificingtheprinciplesofethicalAI.

Casestudy

BestsellerunlocksAIvalueinfastfashion

Inthefashionindustry,around80%ofmerchandiseissoldacrosstwoseasonseachyear.Everythingelseishighlydiscounted—orgetsdonatedordumped.Thisover-productiontranslatestosuboptimalprofitsandpresentsanenormoussustainabilityissueforclothingdesignersandretailers.22

Tohelpteamsmoreaccuratelypredictdemand,clothingandaccessorycompanyBestsellertook10,000images(oneseason’scatalog)anddevelopedanAImodelforeachofitsfourbrands.Injustthreeweeks,thecompanywasabletodevelopandtrainaconvolutionalneuralnetworktoclassifyanimageaccordingtovariousfeatures.Deep-learningdetailswerethenfedintotraditionalanalysismodels(forexample,regressionorprincipalcomponentanalysis)tohelpthecompanybetterunderstandthefactorsthatdrivesales.

IncorporatingthisinformationintoBestseller’scoreforecastingengineincreasedthecompany’ssellingefficiencyfrom78%to82%—andreducedthenumberofdesignsamplesitneededtocreateforeachbrandby15%.

#4Dataandtechnology

Supportindustrial-strengthscaling

Anyonecancreateaproofofconcept.ButforAImodelstobeeffective,useful,andtrustworthy,theymustbeproperlyintegratedintooperationalsystems.WhatacompanycandowithAIisdefined,inlargepart,byhowitselects,governs,analyzes,andappliesdataacrosstheenterprise.Becausehumansarefallible,teamsneedskillsandprocessesthathelpensuretherightdataischosentopowerAImodels.

ThisalsohasamajorimpactonAI’sROI.At

world-classorganizations,datateamsreviewgovernance,management,ethics,literacy,andotherframeworksneededforpeopletoaccess,understand—andtrust—enterprisedata.ITteamsassessinfrastructureandprocessestobalanceAI

experimentationwithindustrial-strengthscaling(see“HowIBM’sChiefAnalyticsOfficerhelpsboostAIROI,”page18).

17

EveryonehasbigideasforAI.TheofficeofIBM’sChiefAnalyticsOfficer(CAO)helpsthosevisionsbecomereality.

TheCAOofficepartnerswithbusinessunitswithinIBMtoidentifyopportunitiestoimproverevenue,savetime,andaddalayerofintelligencetoday-to-daybusinessworkflowswithmachinelearnin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論