2023初一上冊數(shù)學教案七篇_第1頁
2023初一上冊數(shù)學教案七篇_第2頁
2023初一上冊數(shù)學教案七篇_第3頁
2023初一上冊數(shù)學教案七篇_第4頁
2023初一上冊數(shù)學教案七篇_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第2023初一上冊數(shù)學教案七篇2023初一上冊數(shù)學教案七篇

2023初一上冊數(shù)學教案如何寫?教學設計,激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結規(guī)律的能力,解題時養(yǎng)成歸納總結的良好習慣。下面是小編為大家?guī)淼?023初一上冊數(shù)學教案七篇,希望大家能夠喜歡!

2023初一上冊數(shù)學教案精選篇1

教學目標

1.知識與技能

會應用平方差公式進行因式分解,發(fā)展學生推理能力.

2.過程與方法

經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.

3.情感、態(tài)度與價值觀

培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.

重、難點與關鍵

1.重點:利用平方差公式分解因式.

2.難點:領會因式分解的解題步驟和分解因式的徹底性.

3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.

教學方法

采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.

教學過程

一、觀察探討,體驗新知

【問題牽引】

請同學們計算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【學生活動】從逆向思維入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).

二、范例學習,應用所學

【例1】把下列各式分解因式:(投影顯示或板書)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.

【學生活動】分四人小組,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

2023初一上冊數(shù)學教案精選篇2

教學目的

1.了解一元一次方程的概念。

2.掌握含有括號的一元一次方程的解法。

重點、難點

1.重點:解含有括號的一元一次方程的解法。

2.難點:括號前面是負號時,去括號時忘記變號。

教學過程

一、復習提問

1.解下列方程:

(1)5x-2=8(2)5+2x=4x

2.去括號法則是什么“移項”要注意什么

二、新授

一元一次方程的概念

如44x+64=3283+x=(45+x)y-5=2y+l問:它們有什么共同特征

只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。

例1.判斷下列哪些是一元一次方程

x=3x-2x-=-l

5x2-3x+1=02x+y=l-3y=5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

強調去括號時把括號外的因數(shù)分別乘以括號內的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內的每一項的符號。

補充:解方程3x-[3(x+1)-(1+4)]=l

說明:方程中有多重括號時,一般應按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。

三、鞏固練習

教科書第9頁,練習,l、2、3。

四、小結

學習了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。

五、作業(yè)

1.教科書第12頁習題6.2,2第l題。

2023初一上冊數(shù)學教案精選篇3

一、學習目標:1.添括號法則.

2.利用添括號法則靈活應用完全平方公式

二、重點難點

重點:理解添括號法則,進一步熟悉乘法公式的合理利用

難點:在多項式與多項式的乘法中適當添括號達到應用公式的目的.

三、合作學習

Ⅰ.提出問題,創(chuàng)設情境

請同學們完成下列運算并回憶去括號法則.

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)

去括號法則:

去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;

如果括號前是負號,去掉括號后,括號里的各項都要變號。

1.在等號右邊的括號內填上適當?shù)捻棧?/p>

(1)a+b-c=a+()(2)a-b+c=a-()

(3)a-b-c=a-()(4)a+b+c=a-()

2.判斷下列運算是否正確.

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)

添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負括號,擴到括號里的要變號。

五、精講精練

例:運用乘法公式計算

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)

隨堂練習:教科書練習

五、小結:去括號法則

六、作業(yè):教科書習題

2023初一上冊數(shù)學教案精選篇4

一、學習目標:讓學生了解多項式公因式的意義,初步會用提公因式法分解因式

二、重點難點

重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來

難點:讓學生識別多項式的公因式.

三、合作學習:

公因式與提公因式法分解因式的概念.

三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)

既ma+mb+mc=m(a+b+c)

由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。

四、精講精練

例1、將下列各式分解因式:

(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3)a(x-3)+2b(x-3)

通過剛才的練習,下面大家互相交流,總結出找公因式的一般步驟.

首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4.

其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的.

課堂練習

1.寫出下列多項式各項的公因式.

(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72(2)a2b-5ab

(3)4m3-6m2(4)a2b-5ab+9b

(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2

2023初一上冊數(shù)學教案精選篇5

一、學習目標:1.使學生了解運用公式法分解因式的意義;

2.使學生掌握用平方差公式分解因式

二、重點難點

重點:掌握運用平方差公式分解因式.

難點:將單項式化為平方形式,再用平方差公式分解因式;

學習方法:歸納、概括、總結

三、合作學習

創(chuàng)設問題情境,引入新課

在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式.

如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法.

1.請看乘法公式

(a+b)(a-b)=a2-b2(1)

左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是

a2-b2=(a+b)(a-b)(2)

左邊是一個多項式,右邊是整式的乘積.大家判斷一下,第二個式子從左邊到右邊是否是因式分解

利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式講解

如x2-16

=(x)2-42

=(x+4)(x-4).

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

四、精講精練

例1、把下列各式分解因式:

(1)25-16x2;(2)9a2-b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補充例題:判斷下列分解因式是否正確.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

五、課堂練習教科書練習

六、作業(yè)1、教科書習題

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

2023初一上冊數(shù)學教案精選篇6

一、學習目標:

1.使學生會用完全平方公式分解因式.

2.使學生學習多步驟,多方法的分解因式

二、重點難點:

重點:讓學生掌握多步驟、多方法分解因式方法

難點:讓學生學會觀察多項式特點,恰當安排步驟,恰當?shù)剡x用不同方法分解因式

三、合作學習

創(chuàng)設問題情境,引入新課

完全平方公式(a±b)2=a2±2ab+b2

講授新課

1.推導用完全平方公式分解因式的公式以及公式的特點.

將完全平方公式倒寫:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現(xiàn)了因式分解

用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

由分解因式與整式乘法的關系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.

練一練.下列各式是不是完全平方式

(1)a2-4a+4;(2)x2+4x+4y2;

(3)4a2+2ab+b2;(4)a2-ab+b2;

四、精講精練

例1、把下列完全平方式分解因式:

(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.

課堂練習:教科書練習

補充練習:把下列各式分解因式:

(1)(x+y)2+6(x+y)+9;(2)4(2a+b)2-12(2a+b)+9;

五、小結:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

六、作業(yè):1、

2、分解因式:

X2-4x+42x2-4x+2(x2+y2)2-8(x2+y2)+16(x2+y2)2-4x2y2

45ab2-20a-a+a3a-ab2a4-1(a2+1)2-4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論