bi技術(shù)說明文檔_第1頁
bi技術(shù)說明文檔_第2頁
bi技術(shù)說明文檔_第3頁
bi技術(shù)說明文檔_第4頁
bi技術(shù)說明文檔_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

BI因業(yè)務(wù)需要,“中科永聯(lián)”正式更名為“中程在線”,歡迎大家瀏覽新網(wǎng)站“中程在線信息產(chǎn)業(yè)培訓(xùn)網(wǎng)”中科永聯(lián)高級(jí)技術(shù)培訓(xùn)中心()

商業(yè)智能也稱作BI是英文單詞BusinessIntelligence的縮寫。商業(yè)智能通常被理解為將企業(yè)中現(xiàn)有的數(shù)據(jù)轉(zhuǎn)化為知識(shí),幫助企業(yè)做出明智的業(yè)務(wù)經(jīng)營(yíng)決策的工具。這里所談的數(shù)據(jù)包括來自企業(yè)業(yè)務(wù)系統(tǒng)的訂單、庫(kù)存、交易賬目、客戶和供應(yīng)商等來自企業(yè)所處行業(yè)和競(jìng)爭(zhēng)對(duì)手的數(shù)據(jù)以及來自企業(yè)所處的其他外部環(huán)境中的各種數(shù)據(jù)。而商業(yè)智能能夠輔助的業(yè)務(wù)經(jīng)營(yíng)決策,既可以是操作層的,也可以是戰(zhàn)術(shù)層和戰(zhàn)略層的決策。為了將數(shù)據(jù)轉(zhuǎn)化為知識(shí),需要利用數(shù)據(jù)倉(cāng)庫(kù)、聯(lián)機(jī)分析處理(OLAP)工具和數(shù)據(jù)挖掘等技術(shù)。因此,從技術(shù)層面上講,商業(yè)智能不是什么新技術(shù),它只是數(shù)據(jù)倉(cāng)庫(kù)、OLAP和數(shù)據(jù)挖掘等技術(shù)的綜合運(yùn)用。

商業(yè)智能的概念最早在1996年提出。當(dāng)時(shí)將商業(yè)智能定義為一類由數(shù)據(jù)倉(cāng)庫(kù)(或數(shù)據(jù)集市)、查詢報(bào)表、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)備份和恢復(fù)等部分組成的、以幫助企業(yè)決策為目的技術(shù)及其應(yīng)用。目前,商業(yè)智能通常被理解為將企業(yè)中現(xiàn)有的數(shù)據(jù)轉(zhuǎn)化為知識(shí),幫助企業(yè)做出明智的業(yè)務(wù)經(jīng)營(yíng)決策的工具。這里所談的數(shù)據(jù)包括來自企業(yè)業(yè)務(wù)系統(tǒng)的訂單、庫(kù)存、交易賬目、客戶和供應(yīng)商資料及來自企業(yè)所處行業(yè)和競(jìng)爭(zhēng)對(duì)手的數(shù)據(jù),以及來自企業(yè)所處的其他外部環(huán)境中的各種數(shù)據(jù)。而商業(yè)智能能夠輔助的業(yè)務(wù)經(jīng)營(yíng)決策既可以是操作層的,也可以是戰(zhàn)術(shù)層和戰(zhàn)略層的決策。為了將數(shù)據(jù)轉(zhuǎn)化為知識(shí),需要利用數(shù)據(jù)倉(cāng)庫(kù)、聯(lián)機(jī)分析處理(OLAP)工具和數(shù)據(jù)挖掘等技術(shù)。因此,從技術(shù)層面上講,商業(yè)智能不是什么新技術(shù),它只是數(shù)據(jù)倉(cāng)庫(kù)、OLAP和數(shù)據(jù)挖掘等技術(shù)的綜合運(yùn)用。

因此,把商業(yè)智能看成是一種解決方案應(yīng)該比較恰當(dāng)。商業(yè)智能的關(guān)鍵是從許多來自不同的企業(yè)運(yùn)作系統(tǒng)的數(shù)據(jù)中提取出有用的數(shù)據(jù)并進(jìn)行清理,以保證數(shù)據(jù)的正確性,然后經(jīng)過抽取(Extraction)、轉(zhuǎn)換(Transformation)和裝載(Load),即ETL過程,合并到一個(gè)企業(yè)級(jí)的數(shù)據(jù)倉(cāng)庫(kù)里,從而得到企業(yè)數(shù)據(jù)的一個(gè)全局視圖,在此基礎(chǔ)上利用合適的查詢和分析工具、數(shù)據(jù)挖掘工具、OLAP工具等對(duì)其進(jìn)行分析和處理(這時(shí)信息變?yōu)檩o助決策的知識(shí)),最后將知識(shí)呈現(xiàn)給管理者,為管理者的決策過程提供支持。

目前,商業(yè)智能產(chǎn)品及解決方案大致可分為數(shù)據(jù)倉(cāng)庫(kù)產(chǎn)品、數(shù)據(jù)抽取產(chǎn)品、OLAP產(chǎn)品、展示產(chǎn)品、和集成以上幾種產(chǎn)品的針對(duì)某個(gè)應(yīng)用的整體解決方案等。一、商業(yè)智能應(yīng)具有的功能

目前,很多廠商活躍在商業(yè)智能(下面稱BI)領(lǐng)域。事實(shí)上,能夠滿足用戶需要的BI產(chǎn)品和方案必須建立在穩(wěn)定、整合的平臺(tái)之上,該平臺(tái)需要提供用戶管理、安全性控制、連接數(shù)據(jù)源以及訪問、分析和共享信息的功能。BI平臺(tái)的標(biāo)準(zhǔn)化也非常重要,因?yàn)檫@關(guān)系到與企業(yè)多種應(yīng)用系統(tǒng)的兼容問題,解決不了兼容問題,BI系統(tǒng)就不能發(fā)揮出應(yīng)有效果。這里我們通過對(duì)一個(gè)實(shí)驗(yàn)室的BI系統(tǒng)模型(我們將其稱為D系統(tǒng))進(jìn)行功能解剖,來介紹BI系統(tǒng)。

D系統(tǒng)是一個(gè)面向終端使用者,直接訪問業(yè)務(wù)數(shù)據(jù),能夠使管理者從各個(gè)角度出發(fā)分析利用商業(yè)數(shù)據(jù),及時(shí)地掌握組織的運(yùn)營(yíng)現(xiàn)狀,作出科學(xué)的經(jīng)營(yíng)決策的系統(tǒng)。D系統(tǒng)可實(shí)現(xiàn)從簡(jiǎn)單的標(biāo)準(zhǔn)報(bào)表瀏覽到高級(jí)的數(shù)據(jù)分析,滿足組織內(nèi)部人員的需求。D系統(tǒng)涵蓋了常規(guī)意義上商業(yè)智能(BI)系統(tǒng)的功能,主要構(gòu)架包括以下幾個(gè)方面。

讀取數(shù)據(jù)

D系統(tǒng)可讀取多種格式(如Excel、Access、以Tab分割的txt和固定長(zhǎng)的txt等)的文件,同時(shí)可讀取關(guān)系型數(shù)據(jù)庫(kù)(對(duì)應(yīng)ODBC)中的數(shù)據(jù)。在讀取文本和數(shù)據(jù)的基礎(chǔ)上,D系統(tǒng)還可以完成:

連接文本把2個(gè)CSV文件中的共同項(xiàng)目作為鍵(Key),將所需的數(shù)據(jù)合并到一個(gè)文件,這樣可以象操作數(shù)據(jù)庫(kù)一樣方便,但無須用戶編程即可實(shí)現(xiàn)。

設(shè)置項(xiàng)目類型作為數(shù)據(jù)的項(xiàng)目類型,除按鈕(button)(文字項(xiàng)目)、數(shù)值項(xiàng)目以外,還可以設(shè)置日期表示形式的日期數(shù)據(jù)項(xiàng)目、多媒體項(xiàng)目和不需要生成按鈕但在列表顯示中能夠?yàn)g覽的參照項(xiàng)目。

期間設(shè)置日期項(xiàng)目數(shù)據(jù)可以根據(jù)年度或季度等組合后生成新的期間項(xiàng)目。同樣,時(shí)間項(xiàng)目數(shù)據(jù)可以根據(jù)上午、下午或時(shí)間帶等組合后生成新的時(shí)間項(xiàng)目。

設(shè)置等級(jí)對(duì)于數(shù)值項(xiàng)目,可以任意設(shè)置等級(jí),生成與之相對(duì)應(yīng)的按鈕。例如,可以生成與年齡項(xiàng)目中的20歲年齡段、30歲年齡段的等級(jí)相對(duì)應(yīng)的按鈕。

分析功能

關(guān)聯(lián)/限定關(guān)聯(lián)分析主要用于發(fā)現(xiàn)不同事件之間的關(guān)聯(lián)性,即一個(gè)事件發(fā)生的同時(shí),另一個(gè)事件也經(jīng)常發(fā)生。關(guān)聯(lián)分析的重點(diǎn)在于快速發(fā)現(xiàn)那些有實(shí)用價(jià)值的關(guān)聯(lián)發(fā)生的事件。其主要依據(jù)是,事件發(fā)生的概率和條件概率應(yīng)該符合一定的統(tǒng)計(jì)意義。D系統(tǒng)把這種關(guān)聯(lián)的分析設(shè)計(jì)成按鈕的形式,通過選擇有/無關(guān)聯(lián),同時(shí)/相反的關(guān)聯(lián)。對(duì)于結(jié)構(gòu)化的數(shù)據(jù),以客戶的購(gòu)買習(xí)慣數(shù)據(jù)為例,利用D系統(tǒng)的關(guān)聯(lián)分析,可以發(fā)現(xiàn)客戶的關(guān)聯(lián)購(gòu)買需要。例如,一個(gè)開設(shè)儲(chǔ)蓄賬戶的客戶很可能同時(shí)進(jìn)行債券交易和股票交易。利用這種知識(shí)可以采取積極的營(yíng)銷策略,擴(kuò)展客戶購(gòu)買的產(chǎn)品范圍,吸引更多的客戶。

顯示數(shù)值比例/指示顯示順序D系統(tǒng)可使數(shù)值項(xiàng)目的數(shù)據(jù)之間的比例關(guān)系通過按鈕的大小來呈現(xiàn),并顯示其構(gòu)成比,還可以改變數(shù)值項(xiàng)目數(shù)據(jù)的排列順序等。選擇按鈕后,動(dòng)態(tài)顯示不斷發(fā)生變化。這樣能夠獲得直觀的數(shù)據(jù)比較效果,并能夠凸顯差異,便于深入分析現(xiàn)象背后的本質(zhì)。

監(jiān)視功能預(yù)先設(shè)置條件,使符合條件的按鈕顯示報(bào)警(紅)、注意(黃)信號(hào),使問題所在一目了然。比如說:上季度營(yíng)業(yè)額少于100萬元的店警告(黃色標(biāo)出),少于50萬元的報(bào)警(紅色標(biāo)出)。執(zhí)行后,D系統(tǒng)就把以店名命名的按鈕用相應(yīng)的顏色表示出來。

按鈕增值功能可將多個(gè)按鈕組合,形成新的按鈕。比如:把[4月]、[5月]、[6月]三個(gè)按鈕組合后得到新的按鈕[第2季度]。

記錄選擇功能從大量數(shù)據(jù)中選擇按鈕,取出必要的數(shù)據(jù)。挑出來的數(shù)據(jù)可重新構(gòu)成同樣的操作環(huán)境。這樣用戶可以把精力集中在所關(guān)心的數(shù)據(jù)上。

多媒體情報(bào)表示功能由數(shù)碼相機(jī)拍攝的照片或影像文件、通過掃描儀輸入的圖形等多媒體文件、文字處理或者電子表格軟件做成的報(bào)告書、HTML等標(biāo)準(zhǔn)形式保存的文件等,可以通過按鈕進(jìn)行查找。

分割按鈕功能在分割特定按鈕類的情況下,只需切換被分割的個(gè)別按鈕,便可連接不斷實(shí)行已登錄過的定型處理。

程序調(diào)用功能把通過按鈕查找抽取出的數(shù)據(jù),傳給其他的軟件或用戶原有的程序,并執(zhí)行這些程序。

查找按鈕名稱功能通過按鈕名查找按鈕,可以指定精確和模糊兩種查找方法。另外,其他的按鈕類也可以對(duì)查找結(jié)果相關(guān)的數(shù)據(jù)進(jìn)行限定。

豐富的畫面

列表畫面可以用and/or改變查找條件,可以進(jìn)行統(tǒng)計(jì)/排序。統(tǒng)計(jì)對(duì)象只針對(duì)數(shù)值項(xiàng)目,統(tǒng)計(jì)方法分三種:合計(jì)、件數(shù)、平均,而且可以按照12種方式改變數(shù)值的顯示格式。

視圖畫面提供切換視角和變換視圖功能,通過變換與設(shè)置條件相應(yīng)的數(shù)值(單元格)的顏色表示強(qiáng)調(diào)。依次變換視角可進(jìn)行多方面的數(shù)據(jù)分析。視圖的統(tǒng)計(jì)對(duì)象只針對(duì)數(shù)值項(xiàng)目,統(tǒng)計(jì)方法有合計(jì)、平均、構(gòu)成比(縱向、橫向)、累計(jì)(縱向、橫向)、加權(quán)平均、最大、最小、最新和絕對(duì)值等12種。

數(shù)值項(xiàng)目切換通過按鈕類的階層化(行和列最多可分別設(shè)置8層),由整體到局部,一邊分層向下挖掘,一邊分析數(shù)據(jù),可以更加明確探討問題所在。

圖表畫面D系統(tǒng)使用自己開發(fā)的圖形庫(kù),提供柱形圖、折線圖、餅圖、面積圖、柱形+折線五大類35種。在圖表畫面上,也可以像在階層視圖一樣,自由地對(duì)層次進(jìn)行挖掘和返回等操作。

數(shù)據(jù)輸出功能

打印統(tǒng)計(jì)列表和圖表畫面等,可將統(tǒng)計(jì)分析好的數(shù)據(jù)輸出給其他的應(yīng)用程序使用,或者以HTML格式保存。

定型處理

所需要的輸出被顯示出來時(shí),進(jìn)行定型登錄,可以自動(dòng)生成定型處理按鈕。以后,只需按此按鈕,即使很復(fù)雜的操作,也都可以將所要的列表、視圖和圖表顯示出來。

D系統(tǒng)應(yīng)用范圍

商業(yè)智能系統(tǒng)可輔助建立信息中心,如產(chǎn)生各種工作報(bào)表和分析報(bào)表。用作以下分析:

銷售分析主要分析各項(xiàng)銷售指標(biāo),例如毛利、毛利率、交叉比、銷進(jìn)比、盈利能力、周轉(zhuǎn)率、同比、環(huán)比等等;而分析維又可從管理架構(gòu)、類別品牌、日期、時(shí)段等角度觀察,這些分析維又采用多級(jí)鉆取,從而獲得相當(dāng)透徹的分析思路;同時(shí)根據(jù)海量數(shù)據(jù)產(chǎn)生預(yù)測(cè)信息、報(bào)警信息等分析數(shù)據(jù);還可根據(jù)各種銷售指標(biāo)產(chǎn)生新的透視表。

商品分析商品分析的主要數(shù)據(jù)來自銷售數(shù)據(jù)和商品基礎(chǔ)數(shù)據(jù),從而產(chǎn)生以分析結(jié)構(gòu)為主線的分析思路。主要分析數(shù)據(jù)有商品的類別結(jié)構(gòu)、品牌結(jié)構(gòu)、價(jià)格結(jié)構(gòu)、毛利結(jié)構(gòu)、結(jié)算方式結(jié)構(gòu)、產(chǎn)地結(jié)構(gòu)等,從而產(chǎn)生商品廣度、商品深度、商品淘汰率、商品引進(jìn)率、商品置換率、重點(diǎn)商品、暢銷商品、滯銷商品、季節(jié)商品等多種指標(biāo)。通過D系統(tǒng)對(duì)這些指標(biāo)的分析來指導(dǎo)企業(yè)商品結(jié)構(gòu)的調(diào)整,加強(qiáng)所營(yíng)商品的競(jìng)爭(zhēng)能力和合理配置。

人員分析通過D系統(tǒng)對(duì)公司的人員指標(biāo)進(jìn)行分析,特別是對(duì)銷售人員指標(biāo)(銷售指標(biāo)為主,毛利指標(biāo)為輔)和采購(gòu)人員指標(biāo)(銷售額、毛利、供應(yīng)商更換、購(gòu)銷商品數(shù)、代銷商品數(shù)、資金占用、資金周轉(zhuǎn)等)的分析,以達(dá)到考核員工業(yè)績(jī),提高員工積極性,并為人力資源的合理利用提供科學(xué)依據(jù)。主要分析的主題有,員工的人員構(gòu)成、銷售人員的人均銷售額、對(duì)于銷售的個(gè)人銷售業(yè)績(jī)、各管理架構(gòu)的人均銷售額、毛利貢獻(xiàn)、采購(gòu)人員分管商品的進(jìn)貨多少、購(gòu)銷代銷的比例、引進(jìn)的商品銷量如何等等。二、商業(yè)智能定義為下列軟件工具的集合

終端用戶查詢和報(bào)告工具。專門用來支持初級(jí)用戶的原始數(shù)據(jù)訪問,不包括適應(yīng)于專業(yè)人士的成品報(bào)告生成工具。

OLAP工具。提供多維數(shù)據(jù)管理環(huán)境,其典型的應(yīng)用是對(duì)商業(yè)問題的建模與商業(yè)數(shù)據(jù)分析。OLAP也被稱為多維分析。

數(shù)據(jù)挖掘(DataMining)軟件。使用諸如神經(jīng)網(wǎng)絡(luò)、規(guī)則歸納等技術(shù),用來發(fā)現(xiàn)數(shù)據(jù)之間的關(guān)系,做出基于數(shù)據(jù)的推斷。

數(shù)據(jù)倉(cāng)庫(kù)(DataWarehouse)和數(shù)據(jù)集市(DataMart)產(chǎn)品。包括數(shù)據(jù)轉(zhuǎn)換、管理和存取等方面的預(yù)配置軟件,通常還包括一些業(yè)務(wù)模型,如財(cái)務(wù)分析模型。

聯(lián)機(jī)分析處理(OLAP)的概念最早是由關(guān)系數(shù)據(jù)庫(kù)之父E.F.Codd于1993年提出的,他同時(shí)提出了關(guān)于OLAP的12條準(zhǔn)則。OLAP的提出引起了很大的反響,OLAP作為一類產(chǎn)品同聯(lián)機(jī)事務(wù)處理(OLTP)明顯區(qū)分開來。

當(dāng)今的數(shù)據(jù)處理大致可以分成兩大類:聯(lián)機(jī)事務(wù)處理OLTP(On-LineTransactionProcessing)、聯(lián)機(jī)分析處理OLAP(On-LineAnalyticalProcessing)。OLTP是傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)的主要應(yīng)用,主要是基本的、日常的事務(wù)處理,例如銀行交易。OLAP是數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)的主要應(yīng)用,支持復(fù)雜的分析操作,側(cè)重決策支持,并且提供直觀易懂的查詢結(jié)果。

OLAP是使分析人員、管理人員或執(zhí)行人員能夠從多角度對(duì)信息進(jìn)行快速、一致、交互地存取,從而獲得對(duì)數(shù)據(jù)的更深入了解的一類軟件技術(shù)。OLAP的目標(biāo)是滿足決策支持或者滿足在多維環(huán)境下特定的查詢和報(bào)表需求,它的技術(shù)核心是"維"這個(gè)概念。

“維”是人們觀察客觀世界的角度,是一種高層次的類型劃分。“維”一般包含著層次關(guān)系,這種層次關(guān)系有時(shí)會(huì)相當(dāng)復(fù)雜。通過把一個(gè)實(shí)體的多項(xiàng)重要的屬性定義為多個(gè)維(dimension),使用戶能對(duì)不同維上的數(shù)據(jù)進(jìn)行比較。因此OLAP也可以說是多維數(shù)據(jù)分析工具的集合。

OLAP的基本多維分析操作有鉆?。╮ollup和drilldown)、切片(slice)和切塊(dice)、以及旋轉(zhuǎn)(pivot)、drillacross、drillthrough等。

鉆取是改變維的層次,變換分析的粒度。它包括向上鉆?。╮ollup)和向下鉆?。╠rilldown)。rollup是在某一維上將低層次的細(xì)節(jié)數(shù)據(jù)概括到高層次的匯總數(shù)據(jù),或者減少維數(shù);而drilldown則相反,它從匯總數(shù)據(jù)深入到細(xì)節(jié)數(shù)據(jù)進(jìn)行觀察或增加新維。

切片和切塊是在一部分維上選定值后,關(guān)心度量數(shù)據(jù)在剩余維上的分布。如果剩余的維只有兩個(gè),則是切片;如果有三個(gè),則是切塊。

旋轉(zhuǎn)是變換維的方向,即在表格中重新安排維的放置(例如行列互換)。

OLAP有多種實(shí)現(xiàn)方法,根據(jù)存儲(chǔ)數(shù)據(jù)的方式不同可以分為ROLAP、MOLAP、HOLAP。

ROLAP表示基于關(guān)系數(shù)據(jù)庫(kù)的OLAP實(shí)現(xiàn)(RelationalOLAP)。以關(guān)系數(shù)據(jù)庫(kù)為核心,以關(guān)系型結(jié)構(gòu)進(jìn)行多維數(shù)據(jù)的表示和存儲(chǔ)。ROLAP將多維數(shù)據(jù)庫(kù)的多維結(jié)構(gòu)劃分為兩類表:一類是事實(shí)表,用來存儲(chǔ)數(shù)據(jù)和維關(guān)鍵字;另一類是維表,即對(duì)每個(gè)維至少使用一個(gè)表來存放維的層次、成員類別等維的描述信息。維表和事實(shí)表通過主關(guān)鍵字和外關(guān)鍵字聯(lián)系在一起,形成了“星型模式”。對(duì)于層次復(fù)雜的維,為避免冗余數(shù)據(jù)占用過大的存儲(chǔ)空間,可以使用多個(gè)表來描述,這種星型模式的擴(kuò)展稱為“雪花模式”。

MOLAP表示基于多維數(shù)據(jù)組織的OLAP實(shí)現(xiàn)(MultidimensionalOLAP)。以多維數(shù)據(jù)組織方式為核心,也就是說,MOLAP使用多維數(shù)組存儲(chǔ)數(shù)據(jù)。多維數(shù)據(jù)在存儲(chǔ)中將形成“立方塊(Cube)”的結(jié)構(gòu),在MOLAP中對(duì)“立方塊”的“旋轉(zhuǎn)”、“切塊”、“切片”是產(chǎn)生多維數(shù)據(jù)報(bào)表的主要技術(shù)。

HOLAP表示基于混合數(shù)據(jù)組織的OLAP實(shí)現(xiàn)(HybridOLAP)。如低層是關(guān)系型的,高層是多維矩陣型的。這種方式具有更好的靈活性。

還有其他的一些實(shí)現(xiàn)OLAP的方法,如提供一個(gè)專用的SQLServer,對(duì)某些存儲(chǔ)模式(如星型、雪片型)提供對(duì)SQL查詢的特殊支持。

OLAP工具是針對(duì)特定問題的聯(lián)機(jī)數(shù)據(jù)訪問與分析。它通過多維的方式對(duì)數(shù)據(jù)進(jìn)行分析、查詢和報(bào)表。維是人們觀察數(shù)據(jù)的特定角度。例如,一個(gè)企業(yè)在考慮產(chǎn)品的銷售情況時(shí),通常從時(shí)間、地區(qū)和產(chǎn)品的不同角度來深入觀察產(chǎn)品的銷售情況。這里的時(shí)間、地區(qū)和產(chǎn)品就是維。而這些維的不同組合和所考察的度量指標(biāo)構(gòu)成的多維數(shù)組則是OLAP分析的基礎(chǔ),可形式化表示為(維1,維2,……,維n,度量指標(biāo)),如(地區(qū)、時(shí)間、產(chǎn)品、銷售額)。多維分析是指對(duì)以多維形式組織起來的數(shù)據(jù)采取切片(Slice)、切塊(Dice)、鉆?。―rill-down和Roll-up)、旋轉(zhuǎn)(Pivot)等各種分析動(dòng)作,以求剖析數(shù)據(jù),使用戶能從多個(gè)角度、多側(cè)面地觀察數(shù)據(jù)庫(kù)中的數(shù)據(jù),從而深入理解包含在數(shù)據(jù)中的信息。

主流的商業(yè)智能工具包括BO、COGNOS、BRIO。一些國(guó)內(nèi)的軟件工具平臺(tái)如KCOM()也集成了一些基本的商業(yè)智能工具。

根據(jù)綜合性數(shù)據(jù)的組織方式的不同,目前常見的OLAP主要有基于多維數(shù)據(jù)庫(kù)的MOLAP及基于關(guān)系數(shù)據(jù)庫(kù)的ROLAP兩種。MOLAP是以多維的方式組織和存儲(chǔ)數(shù)據(jù),ROLAP則利用現(xiàn)有的關(guān)系數(shù)據(jù)庫(kù)技術(shù)來模擬多維數(shù)據(jù)。在數(shù)據(jù)倉(cāng)庫(kù)應(yīng)用中,OLAP應(yīng)用一般是數(shù)據(jù)倉(cāng)庫(kù)應(yīng)用的前端工具,同時(shí)OLAP工具還可以同數(shù)據(jù)挖掘工具、統(tǒng)計(jì)分析工具配合使用,增強(qiáng)決策分析功能。

三、商業(yè)智能的三個(gè)層次

來自:中國(guó)計(jì)算機(jī)報(bào)

經(jīng)過幾年的積累,大部分中大型的企事業(yè)單位已經(jīng)建立了比較完善的CRM、ERP、OA等基礎(chǔ)信息化系統(tǒng)。這些系統(tǒng)的統(tǒng)一特點(diǎn)都是:通過業(yè)務(wù)人員或者用戶的操作,最終對(duì)數(shù)據(jù)庫(kù)進(jìn)行增加、修改、刪除等操作。上述系統(tǒng)可統(tǒng)一稱為OLTP(OnlineTransactionProcess,在線事務(wù)處理),指的就是系統(tǒng)運(yùn)行了一段時(shí)間以后,必然幫助企事業(yè)單位收集大量的歷史數(shù)據(jù)。但是,在數(shù)據(jù)庫(kù)中分散、獨(dú)立存在的大量數(shù)據(jù)對(duì)于業(yè)務(wù)人員來說,只是一些無法看懂的天書。業(yè)務(wù)人員所需要的是信息,是他們能夠看懂、理解并從中受益的抽象信息。此時(shí),如何把數(shù)據(jù)轉(zhuǎn)化為信息,使得業(yè)務(wù)人員(包括管理者)能夠充分掌握、利用這些信息,并且輔助決策,就是商業(yè)智能主要解決的問題。如何把數(shù)據(jù)庫(kù)中存在的數(shù)據(jù)轉(zhuǎn)變?yōu)闃I(yè)務(wù)人員需要的信息?大部分的答案是報(bào)表系統(tǒng)。簡(jiǎn)單說,報(bào)表系統(tǒng)已經(jīng)可以稱作是BI了,它是BI的低端實(shí)現(xiàn)。現(xiàn)在國(guó)外的企業(yè),大部分已經(jīng)進(jìn)入了中端BI,叫做數(shù)據(jù)分析。有一些企業(yè)已經(jīng)開始進(jìn)入高端BI,叫做數(shù)據(jù)挖掘。而我國(guó)的企業(yè),目前大部分還停留在報(bào)表階段。數(shù)據(jù)報(bào)表不可取代傳統(tǒng)的報(bào)表系統(tǒng)技術(shù)上已經(jīng)相當(dāng)成熟,大家熟悉的Excel、水晶報(bào)表、ReportingService等都已經(jīng)被廣泛使用。但是,隨著數(shù)據(jù)的增多,需求的提高,傳統(tǒng)報(bào)表系統(tǒng)面臨的挑戰(zhàn)也越來越多。1.數(shù)據(jù)太多,信息太少密密麻麻的表格堆砌了大量數(shù)據(jù),到底有多少業(yè)務(wù)人員仔細(xì)看每一個(gè)數(shù)據(jù)?到底這些數(shù)據(jù)代表了什么信息、什么趨勢(shì)?級(jí)別越高的領(lǐng)導(dǎo),越需要簡(jiǎn)明的信息。如果我是董事長(zhǎng),我可能只需要一句話:目前我們的情況是好、中還是差?2.難以交互分析、了解各種組合定制好的報(bào)表過于死板。例如,我們可以在一張表中列出不同地區(qū)、不同產(chǎn)品的銷量,另一張表中列出不同地區(qū)、不同年齡段顧客的銷量。但是,這兩張表無法回答諸如“華北地區(qū)中青年顧客購(gòu)買數(shù)碼相機(jī)類型產(chǎn)品的情況”等問題。業(yè)務(wù)問題經(jīng)常需要多個(gè)角度的交互分析。3.難以挖掘出潛在的規(guī)則報(bào)表系統(tǒng)列出的往往是表面上的數(shù)據(jù)信息,但是海量數(shù)據(jù)深處潛在含有哪些規(guī)則呢?什么客戶對(duì)我們價(jià)值最大,產(chǎn)品之間相互關(guān)聯(lián)的程度如何?越是深層的規(guī)則,對(duì)于決策支持的價(jià)值越大,但是,也越難挖掘出來。4.難以追溯歷史,數(shù)據(jù)形成孤島業(yè)務(wù)系統(tǒng)很多,數(shù)據(jù)存在于不同地方。太舊的數(shù)據(jù)(例如一年前的數(shù)據(jù))往往被業(yè)務(wù)系統(tǒng)備份出去,導(dǎo)致宏觀分析、長(zhǎng)期歷史分析難度很大。因此,隨著時(shí)代的發(fā)展,傳統(tǒng)報(bào)表系統(tǒng)已經(jīng)不能滿足日益增長(zhǎng)的業(yè)務(wù)需求了,企業(yè)期待著新的技術(shù)。數(shù)據(jù)分析和數(shù)據(jù)挖掘的時(shí)代正在來臨。值得注意的是,數(shù)據(jù)分析和數(shù)據(jù)挖掘系統(tǒng)的目的是帶給我們更多的決策支持價(jià)值,并不是取代數(shù)據(jù)報(bào)表。報(bào)表系統(tǒng)依然有其不可取代的優(yōu)勢(shì),并且將會(huì)長(zhǎng)期與數(shù)據(jù)分析、挖掘系統(tǒng)一起并存下去。八維以上的數(shù)據(jù)分析如果說OLTP側(cè)重于對(duì)數(shù)據(jù)庫(kù)進(jìn)行增加、修改、刪除等日常事務(wù)操作,OLAP(OnlineAnalyticsProcess,在線分析系統(tǒng))則側(cè)重于針對(duì)宏觀問題,全面分析數(shù)據(jù),獲得有價(jià)值的信息。為了達(dá)到OLAP的目的,傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)已經(jīng)不夠了,需要一種新的技術(shù)叫做多維數(shù)據(jù)庫(kù)。多維數(shù)據(jù)庫(kù)的概念并不復(fù)雜。舉一個(gè)例子,我們想描述2003年4月份可樂在北部地區(qū)銷售額10萬元時(shí),牽扯到幾個(gè)角度:時(shí)間、產(chǎn)品、地區(qū)。這些叫做維度。至于銷售額,叫做度量值。當(dāng)然,還有成本、利潤(rùn)等。如圖2,每個(gè)維度分別代表了時(shí)間、產(chǎn)品和地區(qū),立方體上的單元代表了度量值。進(jìn)一步,維度可以分為不同的層次。圖1某案例中對(duì)銷售額的解析及當(dāng)前產(chǎn)品的分類圖2使用多維數(shù)據(jù)分析的案例圖3某案例的數(shù)據(jù)分析投影圖除了時(shí)間、產(chǎn)品和地區(qū),我們還可以有很多維度,例如客戶的性別、職業(yè)、銷售部門、促銷方式等等。實(shí)際上,使用中的多維數(shù)據(jù)庫(kù)可能是一個(gè)8維或者15維的立方體。雖然結(jié)構(gòu)上15維的立方體很復(fù)雜,但是概念上非常簡(jiǎn)單。數(shù)據(jù)分析系統(tǒng)的總體架構(gòu)分為四個(gè)部分:源系統(tǒng)、數(shù)據(jù)倉(cāng)庫(kù)、多維數(shù)據(jù)庫(kù)、客戶端?!ぴ聪到y(tǒng):包括現(xiàn)有的所有OLTP系統(tǒng),搭建BI系統(tǒng)并不需要更改現(xiàn)有系統(tǒng)?!?shù)據(jù)倉(cāng)庫(kù):數(shù)據(jù)大集中,通過數(shù)據(jù)抽取,把數(shù)據(jù)從源系統(tǒng)源源不斷地抽取出來,可能每天一次,或者每3個(gè)小時(shí)一次,當(dāng)然是自動(dòng)的。數(shù)據(jù)倉(cāng)庫(kù)依然建立在關(guān)系型數(shù)據(jù)庫(kù)上,往往符合叫做“星型結(jié)構(gòu)”的模型?!ざ嗑S數(shù)據(jù)庫(kù):數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)經(jīng)過多維建模,形成了立方體結(jié)構(gòu)。每一個(gè)立方體描述了一個(gè)業(yè)務(wù)主題,例如銷售、庫(kù)存或者財(cái)務(wù)?!た蛻舳?好的客戶端軟件可以把多維立方體中的信息豐富多彩地展現(xiàn)給用戶。數(shù)據(jù)分析案例:在實(shí)際的案例中,我們利用Oracle9i搭建了數(shù)據(jù)倉(cāng)庫(kù),MicrosoftAnalysisService2000搭建了多維數(shù)據(jù)庫(kù),ProClarity6.0作為客戶端分析軟件。分解樹好像一個(gè)組織圖。分解樹在回答以下問題時(shí)很有效:·在指定的產(chǎn)品組內(nèi),哪種產(chǎn)品有最高的銷售額?·在特定的產(chǎn)品種類內(nèi),各種產(chǎn)品間的銷售額分布如何?·哪個(gè)銷售人員完成了最高百分比的銷售額?在圖1中,可以對(duì)PC機(jī)在各個(gè)地域的銷售額和所占百分比一目了然。任意一層分解樹都可以根據(jù)不同維度隨意展開。在該分解樹中,在大區(qū)這一層是按國(guó)家展開,在國(guó)家這一層是按產(chǎn)品分類展開。投影圖(圖3)使用散點(diǎn)圖的格式,顯示兩個(gè)或三個(gè)度量值之間的關(guān)系。數(shù)據(jù)點(diǎn)的集中預(yù)示兩個(gè)變量之間存在強(qiáng)的相關(guān)關(guān)系,而稀疏分布的數(shù)據(jù)點(diǎn)可能顯示不明顯的關(guān)系。投影圖很適合分析大量的數(shù)據(jù)。在顯示因果關(guān)系方面有明顯效果,比如例外的數(shù)據(jù)點(diǎn)就可以考慮進(jìn)一步研究,因?yàn)樗鼈兟湓凇罢!钡狞c(diǎn)群范圍之外。數(shù)據(jù)挖掘看穿你的需求廣義上說,任何從數(shù)據(jù)庫(kù)中挖掘信息的過程都叫做數(shù)據(jù)挖掘。從這點(diǎn)看來,數(shù)據(jù)挖掘就是BI。但從技術(shù)術(shù)語上說,數(shù)據(jù)挖掘(DataMining)特指的是:源數(shù)據(jù)經(jīng)過清洗和轉(zhuǎn)換等成為適合于挖掘的數(shù)據(jù)集。數(shù)據(jù)挖掘在這種具有固定形式的數(shù)據(jù)集上完成知識(shí)的提煉,最后以合適的知識(shí)模式用于進(jìn)一步分析決策工作。從這種狹義的觀點(diǎn)上,我們可以定義:數(shù)據(jù)挖掘是從特定形式的數(shù)據(jù)集中提煉知識(shí)的過程。數(shù)據(jù)挖掘往往針對(duì)特定的數(shù)據(jù)、特定的問題,選擇一種或者多種挖掘算法,找到數(shù)據(jù)下面隱藏的規(guī)律,這些規(guī)律往往被用來預(yù)測(cè)、支持決策。關(guān)聯(lián)銷售案例:美國(guó)的超市有這樣的系統(tǒng):當(dāng)你采購(gòu)了一車商品結(jié)賬時(shí),售貨員小姐掃描完了你的產(chǎn)品后,計(jì)算機(jī)上會(huì)顯示出一些信息,然后售貨員會(huì)友好地問你:我們有一種一次性紙杯正在促銷,位于F6貨架上,您要購(gòu)買嗎?這句話決不是一般的促銷。因?yàn)橛?jì)算機(jī)系統(tǒng)早就算好了,如果你的購(gòu)物車中有餐巾紙、大瓶可樂和沙拉,則86%的可能性你要買一次性紙杯。結(jié)果是,你說,啊,謝謝你,我剛才一直沒找到紙杯。這不是什么神奇的科學(xué)算命,而是利用數(shù)據(jù)挖掘中的關(guān)聯(lián)規(guī)則算法實(shí)現(xiàn)的系統(tǒng)。每天,新的銷售數(shù)據(jù)會(huì)進(jìn)入挖掘模型,與過去N天的歷史數(shù)據(jù)一起,被挖掘模型處理,得到當(dāng)前最有價(jià)值的關(guān)聯(lián)規(guī)則。同樣的算法,分析網(wǎng)上書店的銷售業(yè)績(jī),計(jì)算機(jī)可以發(fā)現(xiàn)產(chǎn)品之間的關(guān)聯(lián)以及關(guān)聯(lián)的強(qiáng)弱。數(shù)據(jù)報(bào)表、數(shù)據(jù)分析、數(shù)據(jù)挖掘是BI的三個(gè)層面。我們相信未來幾年的趨勢(shì)是:越來越多的企業(yè)在數(shù)據(jù)報(bào)表的基礎(chǔ)上,會(huì)進(jìn)入數(shù)據(jù)分析與數(shù)據(jù)挖掘的領(lǐng)域。商業(yè)智能所帶來的決策支持功能,會(huì)給我們帶來越來越明顯的效益。四、商業(yè)智能能為企業(yè)帶來效益嗎?商業(yè)智能幫助企業(yè)的管理層進(jìn)行快速,準(zhǔn)確的決策,迅速的發(fā)現(xiàn)企業(yè)中的問題,提示管理人員加以解決.但商業(yè)智能軟件系統(tǒng)不能代替管理人員進(jìn)行決策,不能自動(dòng)處理企業(yè)運(yùn)行過程中遇到的問題.因此商業(yè)智能系統(tǒng)并不能為企業(yè)帶來直接的經(jīng)濟(jì)效益,單必須看到,商業(yè)智能為企業(yè)帶來的是一種經(jīng)過科學(xué)武裝的管理思維,給整個(gè)企業(yè)帶來的是決策的快速性和準(zhǔn)確性,發(fā)現(xiàn)問題的及時(shí)性,以及發(fā)現(xiàn)那些對(duì)手未發(fā)現(xiàn)的潛在的知識(shí)和規(guī)律,而這些信息時(shí)企業(yè)產(chǎn)生經(jīng)濟(jì)效益的基礎(chǔ),不能快速,準(zhǔn)確的指定決策方針等于將市場(chǎng)送給對(duì)手,不能及時(shí)發(fā)現(xiàn)業(yè)務(wù)種的潛在信息等于浪費(fèi)自己的資源.比如:通過對(duì)銷售數(shù)據(jù)的分析可發(fā)現(xiàn)各類客戶的特征和喜歡購(gòu)買商品之間的聯(lián)系,這樣就可進(jìn)行更有針對(duì)性的精確的促銷活動(dòng)或向客戶提供更具有個(gè)性的服務(wù)等,這都會(huì)為企業(yè)帶來直接的經(jīng)濟(jì)效益.五、實(shí)施商業(yè)智能的步驟如何?實(shí)施商業(yè)智能系統(tǒng)是一項(xiàng)復(fù)雜的系統(tǒng)工程,整個(gè)項(xiàng)目涉及企業(yè)管理,運(yùn)作管理,信息系統(tǒng),數(shù)據(jù)倉(cāng)庫(kù),數(shù)據(jù)挖掘,統(tǒng)計(jì)分析等眾多門類的知識(shí).因此用戶除了要選擇合適的商業(yè)智能軟件工具外還必須按照正確的實(shí)施方法才能保證項(xiàng)目得以成功.商業(yè)智能項(xiàng)目的實(shí)施步驟可分為:(1)需求分析:需求分析是商業(yè)智能實(shí)施的第一步,在其他活動(dòng)開展之前必須明確的定義企業(yè)對(duì)商業(yè)智能的期望和需求,包括需要分析的主題,各主題可能查看的角度(維度);需要發(fā)現(xiàn)企業(yè)那些方面的規(guī)律.用戶的需求必須明確.(2)數(shù)據(jù)倉(cāng)庫(kù)建模:通過對(duì)企業(yè)需求的分析,建立企業(yè)數(shù)據(jù)倉(cāng)庫(kù)的邏輯模型和物理模型,并規(guī)劃好系統(tǒng)的應(yīng)用架構(gòu),將企業(yè)各類數(shù)據(jù)按照分析主題進(jìn)行組織和歸類.(3)數(shù)據(jù)抽取:數(shù)據(jù)倉(cāng)庫(kù)建立后必須將數(shù)據(jù)從業(yè)務(wù)系統(tǒng)中抽取到數(shù)據(jù)倉(cāng)庫(kù)中,在抽取的過程中還必須將數(shù)據(jù)進(jìn)行轉(zhuǎn)換,清洗,以適應(yīng)分析的需要.(4)建立商業(yè)智能分析報(bào)表:商業(yè)智能分析報(bào)表需要專業(yè)人員按照用戶制訂的格式進(jìn)行開發(fā),用戶也可自行開發(fā)(開發(fā)方式簡(jiǎn)單,快捷).(5)用戶培訓(xùn)和數(shù)據(jù)模擬測(cè)試:對(duì)于開發(fā)—使用分離型的商業(yè)智能系統(tǒng),最終用戶的使用是相當(dāng)簡(jiǎn)單的,只需要點(diǎn)---擊操作就可針對(duì)特定的商業(yè)問題進(jìn)行分析.(6)系統(tǒng)改進(jìn)和完善:任何系統(tǒng)的實(shí)施都必須是不斷完善的.商業(yè)智能系統(tǒng)更是如此,在用戶使用一段時(shí)間后可能會(huì)提出更多的,更具體的要求,這時(shí)需要再按照上述步驟對(duì)系統(tǒng)進(jìn)行重構(gòu)或完善

六、商業(yè)智能的發(fā)展趨勢(shì)

與DSS、EIS系統(tǒng)相比,商業(yè)智能具有更美好的發(fā)展前景。近些年來,商業(yè)智能市場(chǎng)持續(xù)增長(zhǎng)。IDC預(yù)測(cè),到2005年,BI市場(chǎng)將達(dá)到118億$,平均年增長(zhǎng)率為27%(InformationAccessToolsMarketForecastandAnalysis:2001-2005,IDC#24779,June2001)。隨著企業(yè)CRM、ERP、SCM等應(yīng)用系統(tǒng)的引入,企業(yè)不停留在事務(wù)處理過程而注重有效利用企業(yè)的數(shù)據(jù)為準(zhǔn)確和更快的決策提供支持的需求越來越強(qiáng)烈,由此帶動(dòng)的對(duì)商業(yè)智能的需求將是巨大的。

商業(yè)智能的發(fā)展趨勢(shì)可以歸納為以下幾點(diǎn):

功能上具有可配置性、靈活性、可變化性

BI系統(tǒng)的范圍從為部門的特定用戶服務(wù)擴(kuò)展到為整個(gè)企業(yè)所有用戶服務(wù)。同時(shí),由于企業(yè)用戶在職權(quán)、需求上的差異,BI系統(tǒng)提供廣泛的、具有針對(duì)性的功能。從簡(jiǎn)單的數(shù)據(jù)獲取,到利用WEB和局域網(wǎng)、廣域網(wǎng)進(jìn)行豐富的交互、決策信息和知識(shí)的分析和使用。

解決方案更開放、可擴(kuò)展、可按用戶定制,在保證核心技術(shù)的同時(shí),提供客戶化的界面

針對(duì)不同企業(yè)的獨(dú)特的需求,BI系統(tǒng)在提供核心技術(shù)的同時(shí),使系統(tǒng)又具個(gè)性化,即在原有方案基礎(chǔ)上加入自己的代碼和解決方案,增強(qiáng)客戶化的接口和擴(kuò)展特性;可為企業(yè)提供基于商業(yè)智能平臺(tái)的定制的工具,使系統(tǒng)具有更大的靈活性和使用范圍。

從單獨(dú)的商業(yè)智能向嵌入式商業(yè)智能發(fā)展

這是目前商業(yè)智能應(yīng)用的一大趨勢(shì),即在企業(yè)現(xiàn)有的應(yīng)用系統(tǒng)中,如財(cái)務(wù)、人力、銷售等系統(tǒng)中嵌入商業(yè)智能組件,使普遍意義上的事務(wù)處理系統(tǒng)具有商業(yè)智能的特性??紤]BI系統(tǒng)的某個(gè)組件而不是整個(gè)BI系統(tǒng)并非一件簡(jiǎn)單的事,比如將OLAP技術(shù)應(yīng)用到某一個(gè)應(yīng)用系統(tǒng),一個(gè)相對(duì)完整的商業(yè)智能開發(fā)過程,如企業(yè)問題分析、方案設(shè)計(jì)、原型系統(tǒng)開發(fā)、系統(tǒng)應(yīng)用等過程是不可缺少的。

從傳統(tǒng)功能向增強(qiáng)型功能轉(zhuǎn)變

增強(qiáng)型的商業(yè)智能功能是相對(duì)于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論