2024屆四川省南充市陳壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第1頁
2024屆四川省南充市陳壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第2頁
2024屆四川省南充市陳壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第3頁
2024屆四川省南充市陳壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第4頁
2024屆四川省南充市陳壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆四川省南充市陳壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,正方形的四個頂點在半徑為的大圓圓周上,四條邊都與小圓都相切,過圓心,且,則圖中陰影部分的面積是()A. B. C. D.2.直角三角形的兩邊長分別為16和12,則此三角形的外接圓半徑是()A.8或6 B.10或8 C.10 D.83.下列說法正確的是()A.購買江蘇省體育彩票有“中獎”與“不中獎”兩種情況,所以中獎的概率是B.國家級射擊運動員射靶一次,正中靶心是必然事件C.如果在若干次試驗中一個事件發(fā)生的頻率是,那么這個事件發(fā)生的概率一定也是D.如果車間生產(chǎn)的零件不合格的概率為,那么平均每檢查1000個零件會查到1個次品4.如圖所示的兩個三角形(B、F、C、E四點共線)是中心對稱圖形,則對稱中心是()A.點C B.點DC.線段BC的中點 D.線段FC的中點5.在反比例函數(shù)的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<16.下列圖形中,是中心對稱圖形的是()A. B. C. D.7.如圖,AB是⊙O的直徑,C是⊙O上一點(A、B除外),∠BOD=44°,則∠C的度數(shù)是()A.44° B.22° C.46° D.36°8.如圖,在菱形ABCD中,AB=5,對角線AC=6.若過點A作AE⊥BC,垂足為E,則AE的長為()A.4 B.2.4 C.4.8 D.59.關(guān)于的二次方程的一個根是0,則a的值是()A.1 B.-1 C.1或-1 D.0.510.如圖,在半徑為的中,弦長,則點到的距離為()A. B. C. D.11.一張圓形紙片,小芳進(jìn)行了如下連續(xù)操作:將圓形紙片左右對折,折痕為AB,如圖.將圓形紙片上下折疊,使A、B兩點重合,折痕CD與AB相交于M,如圖.將圓形紙片沿EF折疊,使B、M兩點重合,折痕EF與AB相交于N,如圖.連結(jié)AE、AF、BE、BF,如圖.經(jīng)過以上操作,小芳得到了以下結(jié)論:;四邊形MEBF是菱形;為等邊三角形;::.以上結(jié)論正確的有A.1個 B.2個 C.3個 D.4個12.拋物線向左平移1個單位,再向下平移2個單位,所得到的拋物線是()A. B. C. D.二、填空題(每題4分,共24分)13.白云航空公司有若干個飛機(jī)場,每兩個飛機(jī)場之間都開辟一條航線,一共開辟了10條航線,則這個航空公司共有_____個飛機(jī)場.14.二次函數(shù)y=2x2的圖象向左平移2個單位長度,再向下平移5個單位長度后得到的圖象的解析式為_____.15.如圖,在中,點分別是邊上的點,,則的長為________.16.如圖,邊長為2的正方形,以為直徑作,與相切于點,與交于點,則的面積為__________.17.如圖,在△ABC中,∠ACB=90°,點D、E分別在邊AC、BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處,若AC=2BC,則的值為____.18.如圖,是用卡鉗測量容器內(nèi)徑的示意圖.量得卡鉗上A,D兩端點的距離為4cm,,則容器的內(nèi)徑BC的長為_____cm.三、解答題(共78分)19.(8分)定義:如圖1,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,若∠MPN繞點P旋轉(zhuǎn)時始終滿足OM?ON=OP2,則稱∠MPN是∠AOB的“相關(guān)角”.(1)如圖1,已知∠AOB=60°,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,且∠MPN=150°.求證:∠MPN是∠AOB的“相關(guān)角”;(2)如圖2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相關(guān)角”,連結(jié)MN,用含α的式子分別表示∠MPN的度數(shù)和△MON的面積;(3)如圖3,C是函數(shù)(x0)圖象上的一個動點,過點C的直線CD分別交x軸和y軸于點A,B兩點,且滿足BC=3CA,∠AOB的“相關(guān)角”為∠APB,請直接寫出OP的長及相應(yīng)點P的坐標(biāo).20.(8分)為了了解全校1500名學(xué)生對學(xué)校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,對他們喜愛的體育項目(每人只選一項)進(jìn)行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列各題.(1)m=%,這次共抽取了名學(xué)生進(jìn)行調(diào)查;并補全條形圖;(2)請你估計該校約有名學(xué)生喜愛打籃球;(3)現(xiàn)學(xué)校準(zhǔn)備從喜歡跳繩活動的4人(三男一女)中隨機(jī)選取2人進(jìn)行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學(xué)生的概率是多少?21.(8分)請畫出下面幾何體的三視圖22.(10分)如圖,已知二次函數(shù)y=x2﹣4x+3圖象與x軸分別交于點B、D,與y軸交于點C,頂點為A,分別連接AB,BC,CD,DA.(1)求四邊形ABCD的面積;(2)當(dāng)y>0時,自變量x的取值范圍是.23.(10分)某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.(1)求一次函數(shù)的表達(dá)式;(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.24.(10分)國內(nèi)豬肉價格不斷上漲,已知今年10月的豬肉價格比今年年初上漲了80%,李奶奶10月在某超市購買1千克豬肉花了72元錢.(1)今年年初豬肉的價格為每千克多少元?(2)某超市將進(jìn)貨價為每千克55元的豬肉按10月價格出售,平均一天能銷售出100千克,隨著國家對豬肉價格的調(diào)控,超市發(fā)現(xiàn)豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬肉每天有1800元的利潤,并且盡可能讓顧客得到實惠,豬肉的售價應(yīng)該下降多少元?25.(12分)已知:關(guān)于x的方程,(1)求證:無論k取任何實數(shù)值,方程總有實數(shù)根;(2)若等腰三角形ABC的一邊長a=1,兩個邊長b,c恰好是這個方程的兩個根,求△ABC的周長.26.如圖所示,是的直徑,為弦,交于點.若,,.(1)求的度數(shù);(2)求的長度.

參考答案一、選擇題(每題4分,共48分)1、C【分析】由于圓是中心對稱圖形,則陰影部分的面積等于大圓的四分之一,即可求解.【題目詳解】解:由于圓是中心對稱圖形,則陰影部分的面積等于大圓的四分之一.故陰影部分的面積=.故選:C.【題目點撥】本題利用了圓是中心對稱圖形,圓面積公式及概率的計算公式求解,熟練掌握公式是本題的解題關(guān)鍵.2、B【分析】分兩種情況:①16為斜邊長;②16和12為兩條直角邊長,由勾股定理易求得此直角三角形的斜邊長,進(jìn)而可求得外接圓的半徑.【題目詳解】解:由勾股定理可知:①當(dāng)直角三角形的斜邊長為16時,這個三角形的外接圓半徑為8;②當(dāng)兩條直角邊長分別為16和12,則直角三角形的斜邊長=因此這個三角形的外接圓半徑為1.綜上所述:這個三角形的外接圓半徑等于8或1.故選:B.【題目點撥】本題考查的是三角形的外接圓與外心,掌握直角三角形的外接圓是以斜邊中點為圓心,斜邊長的一半為半徑的圓是解題的關(guān)鍵.3、C【題目詳解】解:A、購買江蘇省體育彩票“中獎”的概率是中獎的張數(shù)與發(fā)行的總張數(shù)的比值,故本項錯誤;B、國家級射擊運動員射靶一次,正中靶心是隨機(jī)事件,故本項錯誤;C、如果在若干次試驗中一個事件發(fā)生的頻率是,那么這個事件發(fā)生的概率一定也是,正確;D、如果車間生產(chǎn)的零件不合格的概率為,那么平均每檢查1000個零件不一定會查到1個次品,故本項錯誤,故選C.【題目點撥】本題考查概率的意義,隨機(jī)事件.4、D【分析】直接利用中心對稱圖形的性質(zhì)得出答案.【題目詳解】解:兩個三角形(B、F、C、E四點共線)是中心對稱圖形,則對稱中心是:線段FC的中點.故選:D.【題目點撥】本題比較容易,考查識別圖形的中心對稱性.要注意正確區(qū)分軸對稱圖形和中心對稱圖形,中心對稱是要尋找對稱中心,旋轉(zhuǎn)180度后重合.5、A【分析】根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【題目詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時,圖象分別位于第一、三象限;當(dāng)k<0時,圖象分別位于第二、四象限.②當(dāng)k>0時,在同一個象限內(nèi),y隨x的增大而減??;當(dāng)k<0時,在同一個象限,y隨x的增大而增大.6、D【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.【題目詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【題目點撥】本題考查的知識點是中心對稱圖形,掌握中心對稱圖形的定義是解此題的關(guān)鍵.7、B【分析】根據(jù)圓周角定理解答即可.【題目詳解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故選:B.【題目點撥】本題考查了圓周角定理,屬于基本題型,熟練掌握圓周角定理是關(guān)鍵.8、C【分析】連接BD,根據(jù)菱形的性質(zhì)可得AC⊥BD,AO=AC,然后根據(jù)勾股定理計算出BO長,再算出菱形的面積,然后再根據(jù)面積公式BC?AE=AC?BD可得答案.【題目詳解】連接BD,交AC于O點,∵四邊形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面積是∴BC?AE=24,故選C.9、B【分析】把代入可得,根據(jù)一元二次方程的定義可得,從而可求出的值.【題目詳解】把代入,得:,解得:,∵是關(guān)于x的一元二次方程,∴,即,∴的值是,故選:B.【題目點撥】本題考查了對一元二次方程的定義,一元二次方程的解,以及一元二次方程的解法等知識點的理解和運用,注意隱含條件.10、B【分析】過點O作OC⊥AB于點C,由在半徑為50cm的⊙O中,弦AB的長為50cm,可得△OAB是等邊三角形,繼而求得∠AOB的度數(shù),然后由三角函數(shù)的性質(zhì),求得點O到AB的距離.【題目詳解】解:過點O作OC⊥AB于點C,如圖所示:

∵OA=OB=AB=50cm,

∴△OAB是等邊三角形,

∴∠OAB=60°,∵OC⊥AB故選:B【題目點撥】此題考查了垂徑定理、等邊三角形的判定與性質(zhì)、三角函數(shù),熟練掌握垂徑定理,證明△OAB是等邊三角形是解決問題的關(guān)鍵.11、D【分析】根據(jù)折疊的性質(zhì)可得∠BMD=∠BNF=90°,然后利用同位角相等,兩直線平行可得CD∥EF,從而判定①正確;根據(jù)垂徑定理可得BM垂直平分EF,再求出BN=MN,從而得到BM、EF互相垂直平分,然后根據(jù)對角線互相垂直平分的四邊形是菱形求出四邊形MEBF是菱形,從而得到②正確;根據(jù)直角三角形角所對的直角邊等于斜邊的一半求出∠MEN=30°,然后求出∠EMN=60°,根據(jù)等邊對等角求出∠AEM=∠EAM,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠AEM=30°,從而得到∠AEF=60°,同理求出∠AFE=60°,再根據(jù)三角形的內(nèi)角和等于180°求出∠EAF=60°,從而判定△AEF是等邊三角形,③正確;設(shè)圓的半徑為r,求出EN=,則可得EF=2EN=,即可得S四邊形AEBF:S扇形BEMF的答案,所以④正確.【題目詳解】解:∵紙片上下折疊A、B兩點重合,∴∠BMD=90°,∵紙片沿EF折疊,B、M兩點重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正確;根據(jù)垂徑定理,BM垂直平分EF,又∵紙片沿EF折疊,B、M兩點重合,∴BN=MN,∴BM、EF互相垂直平分,∴四邊形MEBF是菱形,故②正確;∵M(jìn)E=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半徑),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等邊三角形,故③正確;設(shè)圓的半徑為r,則EN=,∴EF=2EN=,∴S四邊形AEBF:S扇形BEMF=故④正確,綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【題目點撥】本題圓的綜合題型,主要考查了翻折變換的性質(zhì),平行線的判定,對角線互相垂直平分的四邊形是菱形,等邊三角形的判定與性質(zhì).注意掌握折疊前后圖形的對應(yīng)關(guān)系是關(guān)鍵.12、B【分析】根據(jù)“左加右減、上加下減”的平移規(guī)律即可解答.【題目詳解】解:拋物線向左平移1個單位,再向下平移2個單位,所得到的拋物線是,故答案為:B.【題目點撥】本題考查了拋物線的平移,解題的關(guān)鍵是熟知“左加右減、上加下減”的平移規(guī)律.二、填空題(每題4分,共24分)13、1【分析】設(shè)共有x個飛機(jī)場,每個飛機(jī)場都要與其余的飛機(jī)場開辟一條航行,但兩個飛機(jī)場之間只開通一條航線.等量關(guān)系為:,把相關(guān)數(shù)值代入求正數(shù)解即可.【題目詳解】設(shè)共有x個飛機(jī)場.,解得,(不合題意,舍去),故答案為:1.【題目點撥】本題考查了一元二次方程的實際應(yīng)用,掌握解一元二次方程的方法是解題的關(guān)鍵.14、y=2(x+2)2﹣1【分析】直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答.【題目詳解】由“左加右減”的原則可知,將二次函數(shù)y=2x2的圖象向左平移2個單位長度所得拋物線的解析式為:y=2(x+2)2,即y=2(x+1)2;由“上加下減”的原則可知,將拋物線y=2(x+2)2向下平移1個單位長度所得拋物線的解析式為:y=2(x+2)2﹣1,即y=2(x+2)2﹣1.故答案為:y=2(x+2)2﹣1.【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.15、1【分析】根據(jù)平行線分線段成比例定理即可解決問題.【題目詳解】∵,,∴,,則,,∴,∵,∴.故答案為:1.【題目點撥】本題考查平行線分線段成比例定理,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.16、【分析】運用切線長定理和勾股定理求出DF,進(jìn)而完成解答.【題目詳解】解:∵與相切于點,與交于點∴EF=AF,EC=BC=2設(shè)EF=AF=x,則CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=,則DF=∴的面積為=故答案為.【題目點撥】本題考查了切線長定理和勾股定理等知識點,根據(jù)切線長定理得到相等的線段是解答本題的關(guān)鍵.17、【分析】由折疊的性質(zhì)可知,是的中垂線,根據(jù)互余角,易證;如圖(見解析),分別在中,利用他們的正切函數(shù)值即可求解.【題目詳解】如圖,設(shè)DE、CF的交點為O由折疊可知,是的中垂線,又設(shè).【題目點撥】本題考查了圖形折疊的性質(zhì)、直角三角形中的正切函數(shù),巧妙利用三個角的正切函數(shù)值相等是解題關(guān)鍵.18、1【分析】依題意得:△AOD∽△BOC,則其對應(yīng)邊成比例,由此求得BC的長度.【題目詳解】解:如圖,連接AD,BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴,又AD=4cm,∴BC=AD=1cm.故答案是:1.【題目點撥】本題考查相似三角形的判定與性質(zhì)的實際應(yīng)用及分析問題、解決問題的能力.利用數(shù)學(xué)知識解決實際問題是中學(xué)數(shù)學(xué)的重要內(nèi)容.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.三、解答題(共78分)19、(1)見解析;(2);(3),P點坐標(biāo)為或【分析】(1)由角平分線求出∠MOP=∠NOP=∠AOB=30°,再證出∠OMP=∠OPN,證明△MOP∽△PON,即可得出結(jié)論;(2)由∠MPN是∠AOB的“相關(guān)角”,判斷出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;過點M作MH⊥OB于H,由三角形的面積公式得出:S△MON=ON?MH,即可得出結(jié)論;(3)設(shè)點C(a,b),則ab=3,過點C作CH⊥OA于H;分兩種情況:①當(dāng)點B在y軸正半軸上時;當(dāng)點A在x軸的負(fù)半軸上時,BC=3CA不可能;當(dāng)點A在x軸的正半軸上時;先求出,由平行線得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA?OB,根據(jù)∠APB是∠AOB的“相關(guān)角”,得出OP,即可得出點P的坐標(biāo);②當(dāng)點B在y軸的負(fù)半軸上時;同①的方法即可得出結(jié)論.【題目詳解】(1)證明:∵∠AOB=60°,P為∠AOB的平分線上一點,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM?ON,∴∠MPN是∠AOB的“相關(guān)角”;(2)解:∵∠MPN是∠AOB的“相關(guān)角”,∴OM?ON=OP2,∴,∵P為∠AOB的平分線上一點,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;過點M作MH⊥OB于H,如圖2,則S△MON=ON?MH=ON?OMsinα=OP2?sinα,∵OP=3,∴S△MON=sinα;(3)設(shè)點C(a,b),則ab=4,過點C作CH⊥OA于H;分兩種情況:①當(dāng)點B在y軸正半軸上時;Ⅰ、當(dāng)點A在x軸的負(fù)半軸上,如圖3所示:BC=3CA不可能,Ⅱ、當(dāng)點A在x軸的正半軸上時,如圖4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA?OB=a?4b=ab=,∵∠APB是∠AOB的“相關(guān)角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點P的坐標(biāo)為:;②當(dāng)點B在y軸的負(fù)半軸上時,如圖5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA?OB=a?2b=ab=,∵∠APB是∠AOB的“相關(guān)角”,∴OP2=OA?OB,∴,∵∠AOB=90°,OP平分∠AOB,∴點P的坐標(biāo)為:;綜上所述:點P的坐標(biāo)為:或.【題目點撥】本題考查反比例函數(shù)與幾何綜合,掌握數(shù)形結(jié)合和分類討論的思想是解題的關(guān)鍵.20、(1)20;50;(2)360;(3).【解題分析】試題分析:(1)首先由條形圖與扇形圖可求得m=100%-14%-8%-24%-34%=20%;由跳繩的人數(shù)有4人,占的百分比為8%,可得總?cè)藬?shù)4÷8%=50;(2)由1500×24%=360,即可求得該校約有360名學(xué)生喜愛打籃球;(3)首先根據(jù)題意畫出表格,然后由表格即可求得所有等可能的結(jié)果與抽到一男一女學(xué)生的情況,再利用概率公式即可求得答案.試題解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳繩的人數(shù)有4人,占的百分比為8%,∴4÷8%=50;如圖所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:

男1

男2

男3

男1

男2,男1

男3,男1

女,男1

男2

男1,男2

男3,男2

女,男2

男3

男1,男3

男2,男3

女,男3

男1,女

男2,女

男3,女

∵所有可能出現(xiàn)的結(jié)果共12種情況,并且每種情況出現(xiàn)的可能性相等.其中一男一女的情況有6種.∴抽到一男一女的概率P=.考點:1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.21、詳見解析.【分析】根據(jù)幾何體分別畫出從正面,上面和左面看到的圖形即可.【題目詳解】如圖所示:主視圖左視圖俯視圖【題目點撥】本題主要考查幾何體的三視圖,掌握三視圖的畫法是解題的關(guān)鍵.22、(1)4;(2)x>3或x<1.【分析】(1)四邊形ABCD的面積=×BD×(xC﹣xA)=×2×(3+1)=4;(2)從圖象可以看出,當(dāng)y>0時,自變量x的取值范圍是:x>3或x<1,即可求解.【題目詳解】(1)函數(shù)y=x2﹣4x+3圖象與x軸分別交于點B、D,與y軸交于點C,頂點為A,則點B、D、C、A的坐標(biāo)分別為:(3,0)、(1,0)、(0,3)、(2,﹣1);四邊形ABCD的面積=×BD×(xC﹣xA)=×2×(3+1)=4;(2)從圖象可以看出,當(dāng)y>0時,自變量x的取值范圍是:x>3或x<1,故答案為:x>3或x<1.【題目點撥】本題考查二次函數(shù)的圖形和性質(zhì),解題時需注意將四邊形的面積轉(zhuǎn)化為三角形的面積進(jìn)行計算,四邊形ABCD的面積=×BD×(xC﹣xA).23、解:(3)一次函數(shù)的表達(dá)式為(4)當(dāng)銷售單價定為4元時,商場可獲得最大利潤,最大利潤是893元(3)銷售單價的范圍是.【解題分析】(3)列出二元一次方程組解出k與b的值可求出一次函數(shù)的表達(dá)式.(4)依題意求出W與x的函數(shù)表達(dá)式可推出當(dāng)x=4時商場可獲得最大利潤.(3)由w=500推出x4﹣380x+7700=0解出x的值即可.【題目詳解】(3)根據(jù)題意得:,解得k=﹣3,b=3.所求一次函數(shù)的表達(dá)式為;(4)=,∵拋物線的開口向下,∴當(dāng)x<90時,W隨x的增大而增大,而銷售單價不低于成本單價,且獲利不得高于45%,即60≤x≤60×(3+45%),∴60≤x≤4,∴當(dāng)x=4時,W==893,∴當(dāng)銷售單價定為4元時,商場可獲得最大利潤,最大利潤是893元.(3)令w=500,解方程,解得,,又∵60≤x≤4,所以當(dāng)w≥500時,70≤x≤4.考點:3.二次函數(shù)的應(yīng)用;4.應(yīng)用題.24、(1)每千克40元(2)豬肉的售價應(yīng)該下降5元【分析】(1)設(shè)今年年初豬肉的價格為每千克x元,根據(jù)今年10月的豬肉價格=今年年初豬肉的價格×(1+上漲率),即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;

(2)設(shè)豬肉的售價應(yīng)該下降y元,則每日可售出(100+10y)千克,根據(jù)總利潤=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論