版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江西省婺源縣聯(lián)考數(shù)學九上期末質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.下列方程中,是一元二次方程的是()A. B.C. D.2.已知二次函數(shù)和一次函數(shù)的圖象如圖所示,下面四個推斷:①二次函數(shù)有最大值②二次函數(shù)的圖象關(guān)于直線對稱③當時,二次函數(shù)的值大于0④過動點且垂直于x軸的直線與的圖象的交點分別為C,D,當點C位于點D上方時,m的取值范圍是或,其中正確的有()A.1個 B.2個 C.3個 D.4個3.在Rt△ABC中,∠C=90°,各邊都擴大2倍,則銳角A的銳角三角函數(shù)值()A.擴大2倍 B.縮小 C.不變 D.無法確定4.在中,,若已知,則()A. B. C. D.5.如圖,點,,均在⊙上,當時,的度數(shù)是()A. B. C. D.6.如圖,晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子()A.逐漸變短 B.先變短后變長C.先變長后變短 D.逐漸變長7.如圖,的外切正六邊形的邊長為2,則圖中陰影部分的面積為()A. B. C. D.8.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.69.已知點P的坐標為(3,-5),則點P關(guān)于原點的對稱點的坐標可表示為()A.(3,5) B.(-3,5) C.(3,-5) D.(-3,-5)10.如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.在Rt△ABC中,若∠C=90°,cosA=,則sinA=________.12.平面直角坐標系中,點A,B的坐標分別是A(2,4),B(3,0),在第一象限內(nèi)以原點O為位似中心,把△OAB縮小為原來的,則點A的對應點A'的坐標為__________.13.若m是關(guān)于x的方程x2-2x-3=0的解,則代數(shù)式4m-2m2+2的值是______.14.一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中y與x之間的函數(shù)關(guān)系.已知兩車相遇時快車比慢車多行駛60千米.若快車從甲地到達乙地所需時間為t時,則此時慢車與甲地相距_____千米.15.已知三點A(0,0),B(5,12),C(14,0),則△ABC內(nèi)心的坐標為____.16.一中和二中舉行數(shù)學知識競賽,參賽學生的競賽得分統(tǒng)計結(jié)果如下表:學校參賽人數(shù)平均數(shù)中位數(shù)方差一中45838682二中458384135某同學分析上表后得到如下結(jié)論:.①一中和二中學生的平均成績相同;②一中優(yōu)秀的人數(shù)多于二中優(yōu)秀的人數(shù)(競賽得分85分為優(yōu)秀);③二中成績的波動比一中小.上述結(jié)論中正確的是___________.(填寫所有正確結(jié)論的序號)17.如圖,在Rt△ABC中,∠ABC=90°,AB=1,BC=,將△ABC繞點頂C順時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是_____.18.如圖,△ABC中,DE∥BC,,△ADE的面積為8,則△ABC的面積為______三、解答題(共66分)19.(10分)如圖,在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.(1)把△ABC繞著點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后對應的△A1B1C;(2)求△ABC旋轉(zhuǎn)到△A1B1C時線段AC掃過的面積.20.(6分)如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.(1)求證:∠CDE=∠ABC;(2)求證:AD?CD=AB?CE.21.(6分)如圖,將繞點順時針旋轉(zhuǎn)得到,點恰好落在的延長線上,連接.分別交于點交于點.求的角度;求證:.22.(8分)計算:23.(8分)如圖,與交于點,過點,交與點,交與點F,,,,.(1)求證:(2)若,求證:24.(8分)已知:如圖,平行四邊形,是的角平分線,交于點,且,;求的度數(shù).25.(10分)某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/kg,市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi)該產(chǎn)品每天的銷售量W(kg)與銷售單價x(元/kg)有如下關(guān)系:W=,設(shè)這種產(chǎn)品每天的銷售利潤為y(元).(1)求y與x之間的函數(shù)關(guān)系式;(2)當銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少?26.(10分)近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當市場豬肉的平均價格達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?(2)5月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)一元二次方程的定義求解,一元二次方程必須滿足兩個條件:①未知數(shù)的最高次數(shù)是2;②二次項系數(shù)不為1.由這兩個條件得到相應的關(guān)系式,再求解即可.【題目詳解】A、是分式方程,故A不符合題意;
B、是二元二次方程,故B不符合題意;
C、是一元二次方程,故C符合題意;
D、是二元二次方程,故D不符合題意;
故選:C.【題目點撥】本題利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是(且a≠1).特別要注意a≠1的條件,這是在做題過程中容易忽視的知識點.2、B【分析】根據(jù)函數(shù)的圖象即可得到結(jié)論.【題目詳解】解:∵二次函數(shù)y1=ax2+bx+c(a≠0)的圖象的開口向上,
∴二次函數(shù)y1有最小值,故①錯誤;
觀察函數(shù)圖象可知二次函數(shù)y1的圖象關(guān)于直線x=-1對稱,故②正確;
當x=-2時,二次函數(shù)y1的值小于0,故③錯誤;
當x<-3或x>-1時,拋物線在直線的上方,
∴m的取值范圍為:m<-3或m>-1,故④正確.
故選B.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標特征以及函數(shù)圖象,熟練運用二次函數(shù)圖象上點的坐標特征求出二次函數(shù)解析式是解題的關(guān)鍵.3、C【解題分析】∵在Rt△ABC中,∠C=90°,∴,,,∴在Rt△ABC中,各邊都擴大2倍得:,,,故在Rt△ABC中,各邊都擴大2倍,則銳角A的銳角三角函數(shù)值不變.故選C.【題目點撥】本題考查了銳角三角函數(shù),根據(jù)銳角三角函數(shù)的概念:銳角A的各個三角函數(shù)值等于直角三角形的邊的比值可知,三角形的各邊都擴大(縮?。┒嗌俦叮J角A的三角函數(shù)值是不會變的.4、B【分析】根據(jù)題意利用三角函數(shù)的定義,定義成三角形的邊的比值,進行分析計算即可求解.【題目詳解】解:在中,,∵,設(shè)BC=3x,則AC=4x,根據(jù)勾股定理可得:,∴.故選:B.【題目點撥】本題主要考查三角函數(shù)的定義,注意掌握求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,通過設(shè)參數(shù)的方法求三角函數(shù)值,或者利用同角(或余角)的三角函數(shù)關(guān)系式求三角函數(shù)值.5、A【分析】先利用等腰三角形的性質(zhì)和三角形內(nèi)角和計算出的度數(shù),然后根據(jù)圓周角定理可得到的度數(shù).【題目詳解】,,,.故選A.【題目點撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.6、B【分析】小亮由A處徑直路燈下,他得影子由長變短,再從路燈下到B處,他的影子則由短變長.【題目詳解】晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子先變短,再變長.故選B.【題目點撥】本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影.7、A【分析】由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設(shè)點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結(jié)論.【題目詳解】∵六邊形ABCDEF是正六邊形,
∴∠AOB=60°,
∴△OAB是等邊三角形,OA=OB=AB=2,
設(shè)點G為AB與⊙O的切點,連接OG,則OG⊥AB,
∴OG=OA?sin60°=2×
=
,
∴S
陰影
=S
△OAB
-S
扇形OMN
=
×2×
-
.
故選A.【題目點撥】考核知識點:正多邊形與圓.熟記扇形面積公式是關(guān)鍵.8、C【解題分析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).9、B【分析】由題意根據(jù)關(guān)于原點對稱點的坐標特征即點的橫縱坐標都互為相反數(shù)即可得出答案.【題目詳解】解:點P的坐標為(3,-5)關(guān)于原點中心對稱的點的坐標是(-3,5),故選:B.【題目點撥】本題考查點關(guān)于原點對稱的點,掌握關(guān)于原點對稱點的坐標特征即橫縱坐標都互為相反數(shù)是解題的關(guān)鍵.10、B【解題分析】在直角三角形ABC中,利用30度所對的直角邊等于斜邊的一半表示出AB的長,再利用勾股定理求出BC的長,由CB+BD求出CD的長,在直角三角形ACD中,利用銳角三角函數(shù)定義求出所求即可.【題目詳解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,則tan75°=tan∠CAD===2+,故選B【題目點撥】本題考查了解直角三角形,熟練掌握三角函數(shù)是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)同一銳角的正弦與余弦的平方和是1,即可求解.【題目詳解】解:,即,,或(舍去),.故答案為:.【題目點撥】此題主要考查了同角的三角函數(shù),關(guān)鍵是掌握同一銳角的正弦與余弦之間的關(guān)系:對任一銳角,都有.12、(1,2)【分析】根據(jù)平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k,結(jié)合題中是在第一象限內(nèi)進行變換進一步求解即可.【題目詳解】由題意得:在第一象限內(nèi),以原點為位似中心,把△OAB縮小為原來的,則點A的對應點A'的坐標為A(2×,4×),即(1,2).故答案為:(1,2).【題目點撥】本題主要考查了直角坐標系中位似圖形的變換,熟練掌握相關(guān)方法是解題關(guān)鍵.13、-1【分析】先由方程的解的含義,得出m2-2m-3=0,變形得m2-2m=3,再將要求的代數(shù)式提取公因式-2,然后將m2-2m=3代入,計算即可.【題目詳解】解:∵m是關(guān)于x的方程x2-2x-3=0的解,
∴m2-2m-3=0,
∴m2-2m=3,
∴1m-2m2+2
=-2(m2-2m)+2
=-2×3+2
=-1.
故答案為:-1.【題目點撥】本題考查了利用一元二次方程的解的含義在代數(shù)式求值中的應用,明確一元二次方程的解的含義并將要求的代數(shù)式正確變形是解題的關(guān)鍵.14、【分析】求出相遇前y與x的關(guān)系式,確定出甲乙兩地的距離,進而求出兩車的速度,即可求解.【題目詳解】設(shè)AB所在直線的解析式為:y=kx+b,把(1.5,70)與(2,0)代入得:,解得:,∴AB所在直線的解析式為:y=-140x+280,令x=0,得到y(tǒng)=280,即甲乙兩地相距280千米,設(shè)兩車相遇時,乙行駛了x千米,則甲行駛了(x+60)千米,根據(jù)題意得:x+x+60=280,解得:x=110,即兩車相遇時,乙行駛了110千米,甲行駛了170千米,∴甲車的速度為85千米/時,乙車速度為55千米/時,根據(jù)題意得:280﹣55×(280÷85)=(千米).則快車到達乙地時,慢車與甲地相距千米.故答案為:【題目點撥】本題主要考查根據(jù)函數(shù)圖象的信息解決行程問題,根據(jù)函數(shù)的圖象,求出AB所在直線的解析式是解題的關(guān)鍵.15、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據(jù)勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內(nèi)切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標,即可得出答案.【題目詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設(shè)⊙P的半徑為r,根據(jù)三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標為(6,4),故答案為:(6,4).【題目點撥】本題主要考查勾股定理、三角形的內(nèi)切圓半徑公式及切線長定理,根據(jù)三角形的內(nèi)切圓半徑公式及切線長定理求出點P的坐標是解題的關(guān)鍵.16、①②【分析】根據(jù)表格中的數(shù)據(jù)直接得出平均數(shù)相同,再根據(jù)一中成績的中位數(shù)86>85可判斷一中優(yōu)秀人數(shù)較多,最后根據(jù)方差越大,成績波動越大判斷波動性.【題目詳解】由表格數(shù)據(jù)可知一中和二中的平均成績相同,故①正確;∵一中成績的中位數(shù)86>85,二中成績的中位數(shù)84<85,競賽得分85分為優(yōu)秀∴一中優(yōu)秀的人數(shù)多于二中優(yōu)秀的人數(shù)故②正確;二中的方差大于一中,則二中成績的波動比一中大,故③錯誤;故答案為:①②【題目點撥】本題考查平均數(shù),中位數(shù)與方差,難度不大,熟練掌握基本概念是解題的關(guān)鍵.17、【分析】由旋轉(zhuǎn)的性質(zhì)得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,從而∠BCM=90°,然后根據(jù)勾股定理求解即可.【題目詳解】解:由旋轉(zhuǎn)的性質(zhì)得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案為:.【題目點撥】本題考查了圖形的變換-旋轉(zhuǎn),銳角三角函數(shù),以及勾股定理等知識,準確把握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.18、18.【解題分析】∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵,∴,∴.三、解答題(共66分)19、(1)見解析;(2)2π【分析】(1)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向找出各點的對稱點,順次連接即可;
(2)根據(jù)扇形的面積公式求解即可.【題目詳解】(1)如圖所示,△A1B1C即為所求;(2)∵CA=,∴S==2π.【題目點撥】本題考查旋轉(zhuǎn)作圖的知識,難度不大,注意掌握旋轉(zhuǎn)作圖的三要素,旋轉(zhuǎn)中心、旋轉(zhuǎn)方向、旋轉(zhuǎn)角度.20、(1)證明見解析;(2)證明見解析;【解題分析】試題分析:(1)根據(jù)BD是AB與BE的比例中項可得,BD是∠ABC的平分線,則∠ABD=∠DBE,可證△ABD∽△DBE,∠A=∠BDE.又因為∠BDC=∠A+∠ABD,即可證明∠CDE=∠ABD=∠ABC,(2)先根據(jù)∠CDE=∠CBD,∠C=∠C,可判定△CDE∽△CBD,可得.又△ABD∽△DBE,所以,,所以.試題解析:(1)∵BD是AB與BE的比例中項,∴,又BD是∠ABC的平分線,則∠ABD=∠DBE,∴△ABD∽△DBE,∴∠A=∠BDE.又∠BDC=∠A+∠ABD,∴∠CDE=∠ABD=∠ABC,即證.(2)∵∠CDE=∠CBD,∠C=∠C,∴△CDE∽△CBD,∴.又△ABD∽△DBE,∴,∴,∴.21、(1);(2)見解析【解題分析】(1)根據(jù)題意將繞點順時針旋轉(zhuǎn)得到,可知≌,根據(jù)全等三角形性質(zhì)和外角性質(zhì)可求得∠AFE的度數(shù).(2)根據(jù)(1)中≌可知對應角相等,對應邊相等,來證明(ASA).【題目詳解】解:(1)由繞順時針旋轉(zhuǎn)得到又∠AFB=∠ACB=證明:在和中【題目點撥】本題考查的是三角形旋轉(zhuǎn)造全等,利用全等三角形的性質(zhì)和外角的性質(zhì)來求得外角的度數(shù)和判定另外兩個三角形全等.22、【分析】分別按照二次根式化簡,絕對值的化簡,求一個數(shù)的立方根,負整數(shù)指數(shù)冪的計算法則進行計算,最后做加減.【題目詳解】解:===【題目點撥】本題考查二次根式化簡,絕對值的化簡,求一個數(shù)的立方根,負整數(shù)指數(shù)冪的計算,熟練掌握相應的計算法則是本題的解題關(guān)鍵.23、(1)見解析;(2)見解析【分析】(1)根據(jù)兩邊對應成比例且夾角相等的兩個三角形相似可證△AOB∽△COD,從而可證∠A=∠D;(2)證明△AOE∽△DOF,△BOE∽△COF,然后根據(jù)相似三角形的對應邊成比例解答即可.【題目詳解】證明:(1)∵,,,,∴,∵∠AOB=∠COD,∴△AOB∽△COD,∴∠A=∠D;(2)∵∠A=∠D,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門店食品管理制度
- 自考環(huán)境與資源保護法學真題模擬及答案
- 養(yǎng)老院情感交流制度
- 企業(yè)員工培訓與素質(zhì)提升制度
- 重質(zhì)純堿工復試評優(yōu)考核試卷含答案
- 我國上市公司流動性與資本結(jié)構(gòu)的模型構(gòu)建與實證分析
- 我國上市公司引入雙層股權(quán)結(jié)構(gòu)的法律路徑探析:基于國際經(jīng)驗與本土實踐
- 印染燒毛工復試強化考核試卷含答案
- 裁剪工安全意識評優(yōu)考核試卷含答案
- 木作文物修復師安全實踐測試考核試卷含答案
- 鈑金檢驗作業(yè)指導書
- 公司安全大講堂活動方案
- 2025年江蘇省無錫市梁溪區(qū)八下英語期末統(tǒng)考模擬試題含答案
- GB/T 42186-2022醫(yī)學檢驗生物樣本冷鏈物流運作規(guī)范
- 江蘇省南通市2024-2025學年高一上學期1月期末考試數(shù)學試題
- T/CA 105-2019手機殼套通用規(guī)范
- 以真育責:小學生責任教育在求真理念下的探索與實踐
- 2019營口天成消防JB-TB-TC5120 火災報警控制器(聯(lián)動型)安裝使用說明書
- 部編版語文六年級上冊第一單元綜合素質(zhì)測評B卷含答案
- 買賣肉合同樣本
- 2025屆高考語文復習:以《百合花》為例掌握小說考點
評論
0/150
提交評論