版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)真題分類精編一、集合和常用邏輯用語(yǔ)一、單選題1.(2022·全國(guó)甲(理))設(shè)全集,集合,則?U(A∪B)=(A. B. C. D.2.(2022·全國(guó)甲(文))設(shè)集合,則()A. B. C. D.3.(2022·全國(guó)乙(文))集合,則()A. B. C. D.4.(2022·全國(guó)乙(理))設(shè)全集,集合M滿足?UM={1,3},則(A. B. C. D.5.(2022·新高考Ⅰ卷)若集合,則()A. B. C. D.6.(2022·新高考Ⅱ卷)已知集合,則()A. B. C. D.7.(2022·北京卷T1)已知全集,集合,則?UA=()A. B. C. D.8.(2022·浙江卷T1)設(shè)集合,則()A. B. C. D.9.(2022·北京卷T6)設(shè)是公差不為0的無窮等差數(shù)列,則“為遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.(2022·浙江卷T4)設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件二、復(fù)數(shù)一、單選題1.(2022·全國(guó)甲(理))若,則()A. B. C. D.2.(2022·全國(guó)甲(文))若.則()A. B. C. D.3.(2022·全國(guó)乙(文))設(shè),其中為實(shí)數(shù),則()A. B. C. D.4.(2022·全國(guó)乙(理))已知,且,其中a,b為實(shí)數(shù),則()A. B. C. D.5.(2022·新高考Ⅰ卷)2.若,則()A. B. C.1 D.26.(2022·新高考Ⅱ卷)()A. B. C. D.7.(2022·北京卷T2)若復(fù)數(shù)z滿足,則()A.1 B.5 C.7 D.258.(2022·浙江卷T2)已知(為虛數(shù)單位),則()A. B. C. D.三、不等式一、選擇題1.(2022·全國(guó)甲(文)T12)已知,則()A. B. C. D.2.(2022·全國(guó)甲(理)T12)已知,則()A. B. C. D.3.(2022·新高考Ⅰ卷T7)設(shè),則()A. B. C. D.4.(2022·新高考Ⅱ卷T12)對(duì)任意x,y,,則()A. B.C. D.四、平面向量一、選擇題1.(2022·全國(guó)乙(文)T3)已知向量,則()A.2 B.3 C.4 D.52.(2022·全國(guó)乙(理)T3)已知向量滿足,則()A. B. C.1 D.23.(2022·新高考Ⅰ卷T3)在中,點(diǎn)D在邊AB上,.記,則()A. B. C. D.4.(2022·新高考Ⅱ卷T4)已知,若,則()A. B. C.5 D.6二、填空題1.(2022·全國(guó)甲(文)T13)已知向量.若,則______________.2.(2022·全國(guó)甲(理)T13)設(shè)向量,的夾角的余弦值為,且,,則_________.五、函數(shù)與導(dǎo)數(shù)一、選擇題1.(2022·全國(guó)甲(文T7)(理T5))函數(shù)在區(qū)間的圖象大致為()A. B.C. D.2.(2022·全國(guó)甲(文T8)(理T6)).當(dāng)時(shí),函數(shù)取得最大值,則()A. B. C. D.13.(2022·全國(guó)乙(文T8)如圖是下列四個(gè)函數(shù)中的某個(gè)函數(shù)在區(qū)間的大致圖像,則該函數(shù)是()
A. B. C. D.4.(2022·全國(guó)乙(理)T12)已知函數(shù)的定義域均為R,且.若的圖像關(guān)于直線對(duì)稱,,則()A. B. C. D.5.(2022·新高考Ⅰ卷T10)已知函數(shù),則()A.有兩個(gè)極值點(diǎn) B.有三個(gè)零點(diǎn)C.點(diǎn)是曲線的對(duì)稱中心 D.直線是曲線的切線6.(2022·新高考Ⅰ卷T12)已知函數(shù)及其導(dǎo)函數(shù)的定義域均為,記,若,均為偶函數(shù),則()A. B. C. D.7.(2022·新高考Ⅱ卷T8)若函數(shù)的定義域?yàn)镽,且,則()A. B. C.0 D.18.(2022·北京卷T4)己知函數(shù),則對(duì)任意實(shí)數(shù)x,有()A. B.C. D.9.(2022·北京卷T7)在北京冬奧會(huì)上,國(guó)家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術(shù),為實(shí)現(xiàn)綠色冬奧作出了貢獻(xiàn).如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和的關(guān)系,其中T表示溫度,單位是K;P表示壓強(qiáng),單位是.下列結(jié)論中正確的是()
A.當(dāng),時(shí),二氧化碳處于液態(tài)B.當(dāng),時(shí),二氧化碳處于氣態(tài)C.當(dāng),時(shí),二氧化碳處于超臨界狀態(tài)D.當(dāng),時(shí),二氧化碳處于超臨界狀態(tài)10.(2022·浙江卷T7)已知,則()A.25 B.5 C. D.二、填空題1.(2022·全國(guó)乙(文T16)若是奇函數(shù),則_____,______.2.(2022·全國(guó)乙(理)T16)已知和分別是函數(shù)(且)的極小值點(diǎn)和極大值點(diǎn).若,則a的取值范圍是____________.3.(2022·新高考Ⅰ卷T15)若曲線有兩條過坐標(biāo)原點(diǎn)的切線,則a的取值范圍是______________.4.(2022·新高考Ⅱ卷T14)寫出曲線過坐標(biāo)原點(diǎn)的切線方程:____________,____________.5.(2022·北京卷T11)函數(shù)的定義域是_________.6.(2022·北京卷T14)設(shè)函數(shù)若存在最小值,則a的一個(gè)取值為________;a的最大值為___________.7.(2022·浙江卷T14)已知函數(shù)則________;若當(dāng)時(shí),,則的最大值是_________.解答題1.(2022·全國(guó)甲(文)T20)已知函數(shù),曲線在點(diǎn)處的切線也是曲線的切線.(1)若,求a;(2)求a的取值范圍.2.(2022·全國(guó)甲(理)T21)已知函數(shù).(1)若,求a的取值范圍;(2)證明:若有兩個(gè)零點(diǎn),則環(huán).3.(2022·全國(guó)乙(文)T20)已知函數(shù).(1)當(dāng)時(shí),求的最大值;(2)若恰有一個(gè)零點(diǎn),求a的取值范圍.4.(2022·全國(guó)乙(理)T21)已知函數(shù)(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間各恰有一個(gè)零點(diǎn),求a的取值范圍.5.(2022·新高考Ⅰ卷T22)已知函數(shù)和有相同最小值.(1)求a;(2)證明:存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),并且從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.6.(2022·新高考Ⅱ卷T22)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),,求a的取值范圍;(3)設(shè),證明:.7.(2022·北京卷T20)已知函數(shù).(1)求曲線在點(diǎn)處切線方程;(2)設(shè),討論函數(shù)在上的單調(diào)性;(3)證明:對(duì)任意的,有.8.(2022·浙江卷T22)設(shè)函數(shù).(1)求的單調(diào)區(qū)間;(2)已知,曲線上不同的三點(diǎn)處的切線都經(jīng)過點(diǎn).證明:(?。┤?,則;(ⅱ)若,則.(注:是自然對(duì)數(shù)底數(shù))六、數(shù)列一、選擇題1.(2022·全國(guó)乙(文)T10)已知等比數(shù)列的前3項(xiàng)和為168,,則()A.14 B.12 C.6 D.32.(2022·全國(guó)乙(理)T8)已知等比數(shù)列的前3項(xiàng)和為168,,則()A.14 B.12 C.6 D.33.(2022·全國(guó)乙(理)T4)嫦娥二號(hào)衛(wèi)星在完成探月任務(wù)后,繼續(xù)進(jìn)行深空探測(cè),成為我國(guó)第一顆環(huán)繞太陽(yáng)飛行人造行星,為研究嫦娥二號(hào)繞日周期與地球繞日周期的比值,用到數(shù)列:,,,…,依此類推,其中.則()A B. C. D.4.(2022·新高考Ⅱ卷T3)中國(guó)的古建筑不僅是擋風(fēng)遮雨的住處,更是美學(xué)和哲學(xué)的體現(xiàn).如圖是某古建筑物的剖面圖,是舉,是相等的步,相鄰桁的舉步之比分別為,若是公差為0.1的等差數(shù)列,且直線的斜率為0.725,則()A.0.75 B.0.8 C.0.85 D.0.95.(2022·浙江卷T10)已知數(shù)列滿足,則()A. B. C. D.二、填空題1.(2022·全國(guó)乙(文)T13)記為等差數(shù)列的前n項(xiàng)和.若,則公差_______.2.(2022·北京卷T15)己知數(shù)列各項(xiàng)均為正數(shù),其前n項(xiàng)和滿足.給出下列四個(gè)結(jié)論:①的第2項(xiàng)小于3;②為等比數(shù)列;③為遞減數(shù)列;④中存在小于的項(xiàng).其中所有正確結(jié)論的序號(hào)是__________.三、解答題1.(2022·全國(guó)甲(文T18)(理T17)記為數(shù)列的前n項(xiàng)和.已知.(1)證明:是等差數(shù)列;(2)若成等比數(shù)列,求的最小值.2.(2022·新高考Ⅰ卷T17)記為數(shù)列的前n項(xiàng)和,已知是公差為的等差數(shù)列.(1)求的通項(xiàng)公式;(2)證明:.3.(2022·新高考Ⅱ卷T17)已知為等差數(shù)列,是公比為2的等比數(shù)列,且.(1)證明:;(2)求集合中元素個(gè)數(shù).4.(2022·北京卷T21)已知為有窮整數(shù)數(shù)列.給定正整數(shù)m,若對(duì)任意的,在Q中存在,使得,則稱Q為連續(xù)可表數(shù)列.(1)判斷是否為連續(xù)可表數(shù)列?是否為連續(xù)可表數(shù)列?說明理由;(2)若為連續(xù)可表數(shù)列,求證:k的最小值為4;(3)若為連續(xù)可表數(shù)列,且,求證:.5.(2022·浙江卷T20)已知等差數(shù)列的首項(xiàng),公差.記的前n項(xiàng)和為.(1)若,求;(2)若對(duì)于每個(gè),存在實(shí)數(shù),使成等比數(shù)列,求d的取值范圍.七、三角函數(shù)與解三角形一、選擇題1.(2022·全國(guó)甲(文)T5)將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度后得到曲線C,若C關(guān)于y軸對(duì)稱,則的最小值是()A. B. C. D.2.(2022·全國(guó)甲(理)T11)設(shè)函數(shù)在區(qū)間恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.3.(2022·全國(guó)乙(文)T11)函數(shù)在區(qū)間的最小值、最大值分別為()A. B. C. D.4.(2022·新高考Ⅰ卷T6)記函數(shù)的最小正周期為T.若,且的圖象關(guān)于點(diǎn)中心對(duì)稱,則()A.1 B. C. D.35.(2022·北京卷T5)已知函數(shù),則()A.在上單調(diào)遞減 B.在上單調(diào)遞增C.在上單調(diào)遞減 D.在上單調(diào)遞增6.(2022·北京卷T10)在中,.P為所在平面內(nèi)的動(dòng)點(diǎn),且,則的取值范圍是()A. B. C. D.7.(2022·浙江卷T6)為了得到函數(shù)的圖象,只要把函數(shù)圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度8.(2022·新高考Ⅱ卷T6)角滿足,則()A. B.C. D.9.(2022·新高考Ⅱ卷T9)函數(shù)的圖象以中心對(duì)稱,則()A.在單調(diào)遞減B.在有2個(gè)極值點(diǎn)C.直線是一條對(duì)稱軸D.直線是一條切線二、填空題1.(2022·全國(guó)甲(理)T16)已知中,點(diǎn)D在邊BC上,.當(dāng)取得最小值時(shí),________.2.(2022·全國(guó)乙(理)T15)記函數(shù)的最小正周期為T,若,為的零點(diǎn),則的最小值為____________.3.(2022·北京卷T13)若函數(shù)的一個(gè)零點(diǎn)為,則________;________.4.(2022·浙江卷T11)我國(guó)南宋著名數(shù)學(xué)家秦九韶,發(fā)現(xiàn)了從三角形三邊求面積的公式,他把這種方法稱為“三斜求積”,它填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白.如果把這個(gè)方法寫成公式,就是,其中a,b,c是三角形的三邊,S是三角形的面積.設(shè)某三角形的三邊,則該三角形的面積___________.5(2022·浙江卷T13)若,則__________,_________.三、解答題1.(2022·全國(guó)乙(文)T17)記的內(nèi)角A,B,C的對(duì)邊分別為a,b,c﹐已知.(1)若,求C;(2)證明:2.(2022·全國(guó)乙(理)T17)記的內(nèi)角的對(duì)邊分別為,已知.(1)證明:;(2)若,求的周長(zhǎng).3.(2022·新高考Ⅰ卷T18)記的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)若,求B;(2)求的最小值.4.(2022·新高考Ⅱ卷T18)記的三個(gè)內(nèi)角分別為A,B,C,其對(duì)邊分別為a,b,c,分別以a,b,c為邊長(zhǎng)的三個(gè)正三角形的面積依次為,已知.(1)求的面積;(2)若,求b.5.(2022·北京卷T16)在中,.(1)求;(2)若,且的面積為,求的周長(zhǎng).6.(2022·浙江卷T18)在中,角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求的值;(2)若,求的面積.八、概率統(tǒng)計(jì)一、單選題1.(2022·全國(guó)甲(文T2)(理T2))某社區(qū)通過公益講座以普及社區(qū)居民的垃圾分類知識(shí).為了解講座效果,隨機(jī)抽取10位社區(qū)居民,讓他們?cè)谥v座前和講座后各回答一份垃圾分類知識(shí)問卷,這10位社區(qū)居民在講座前和講座后問卷答題的正確率如下圖:
則()A.講座前問卷答題的正確率的中位數(shù)小于B.講座后問卷答題的正確率的平均數(shù)大于C.講座前問卷答題的正確率的標(biāo)準(zhǔn)差小于講座后正確率的標(biāo)準(zhǔn)差D.講座后問卷答題的正確率的極差大于講座前正確率的極差2.(2022·全國(guó)甲(文)T6)從分別寫有1,2,3,4,5,6的6張卡片中無放回隨機(jī)抽取2張,則抽到的2張卡片上的數(shù)字之積是4的倍數(shù)的概率為()A. B. C. D.3.(2022·全國(guó)乙(文)T)4.分別統(tǒng)計(jì)了甲、乙兩位同學(xué)16周的各周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)(單位:h),得如下莖葉圖:則下列結(jié)論中錯(cuò)誤的是()A.甲同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)的樣本中位數(shù)為7.4B.乙同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)的樣本平均數(shù)大于8C.甲同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)大于8的概率的估計(jì)值大于0.4D.乙同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)大于8的概率的估計(jì)值大于0.64.(2022·全國(guó)乙(理)T10)某棋手與甲、乙、丙三位棋手各比賽一盤,各盤比賽結(jié)果相互獨(dú)立.已知該棋手與甲、乙、丙比賽獲勝概率分別為,且.記該棋手連勝兩盤的概率為p,則()A.p與該棋手和甲、乙、丙的比賽次序無關(guān) B.該棋手在第二盤與甲比賽,p最大C.該棋手在第二盤與乙比賽,p最大 D.該棋手在第二盤與丙比賽,p最大5.(2022·新高考Ⅰ卷T5)從2至8的7個(gè)整數(shù)中隨機(jī)取2個(gè)不同的數(shù),則這2個(gè)數(shù)互質(zhì)的概率為()A. B. C. D.6.(2022·新高考Ⅱ卷T5)有甲乙丙丁戊5名同學(xué)站成一排參加文藝匯演,若甲不站在兩端,丙和丁相鄰的不同排列方式有多少種()A.12種 B.24種 C.36種 D.48種7.(2022·北京卷T)8.若,則()A.40 B.41 C. D.二、填空題1.(2022·全國(guó)甲(理)T15)從正方體的8個(gè)頂點(diǎn)中任選4個(gè),則這4個(gè)點(diǎn)在同一個(gè)平面的概率為________.2.(2022·全國(guó)乙(文T14)(理T13))從甲、乙等5名同學(xué)中隨機(jī)選3名參加社區(qū)服務(wù)工作,則甲、乙都入選的概率為____________.3.(2022·新高考Ⅱ卷T13)已知隨機(jī)變量X服從正態(tài)分布,且,則____________.4.(2022·浙江卷T12)已知多項(xiàng)式,則__________,___________.5.(2022·新高考Ⅰ卷T13)的展開式中的系數(shù)為________________(用數(shù)字作答).6.(2022·浙江卷T15)現(xiàn)有7張卡片,分別寫上數(shù)字1,2,2,3,4,5,6.從這7張卡片中隨機(jī)抽取3張,記所抽取卡片上數(shù)字最小值為,則__________,_________.三、解答題1.(2022·全國(guó)甲(文)T)(2022·全國(guó)甲(文)T17)甲、乙兩城之間的長(zhǎng)途客車均由A和B兩家公司運(yùn)營(yíng),為了解這兩家公司長(zhǎng)途客車的運(yùn)行情況,隨機(jī)調(diào)查了甲、乙兩城之間的500個(gè)班次,得到下面列聯(lián)表:準(zhǔn)點(diǎn)班次數(shù)未準(zhǔn)點(diǎn)班次數(shù)A24020B21030(1)根據(jù)上表,分別估計(jì)這兩家公司甲、乙兩城之間的長(zhǎng)途客車準(zhǔn)點(diǎn)的概率;(2)能否有90%的把握認(rèn)為甲、乙兩城之間的長(zhǎng)途客車是否準(zhǔn)點(diǎn)與客車所屬公司有關(guān)?附:,0.1000.0500.0102.7063.8416.6352.(2022·全國(guó)甲(理)T19)甲、乙兩個(gè)學(xué)校進(jìn)行體育比賽,比賽共設(shè)三個(gè)項(xiàng)目,每個(gè)項(xiàng)目勝方得10分,負(fù)方得0分,沒有平局.三個(gè)項(xiàng)目比賽結(jié)束后,總得分高的學(xué)校獲得冠軍.已知甲學(xué)校在三個(gè)項(xiàng)目中獲勝的概率分別為0.5,0.4,0.8,各項(xiàng)目的比賽結(jié)果相互獨(dú)立.(1)求甲學(xué)校獲得冠軍的概率;(2)用X表示乙學(xué)校的總得分,求X的分布列與期望.3.(2022·全國(guó)乙(文T19)(理T19)某地經(jīng)過多年的環(huán)境治理,已將荒山改造成了綠水青山.為估計(jì)一林區(qū)某種樹木的總材積量,隨機(jī)選取了10棵這種樹木,測(cè)量每棵樹的根部橫截面積(單位:)和材積量(單位:),得到如下數(shù)據(jù):樣本號(hào)i12345678910總和根部橫截面積0.040.060.040.080.080.050.050.070.070.060.6材積量0.250.400.220.540.510.340.360.460.420.403.9并計(jì)算得.(1)估計(jì)該林區(qū)這種樹木平均一棵的根部橫截面積與平均一棵的材積量;(2)求該林區(qū)這種樹木的根部橫截面積與材積量的樣本相關(guān)系數(shù)(精確到0.01);(3)現(xiàn)測(cè)量了該林區(qū)所有這種樹木的根部橫截面積,并得到所有這種樹木的根部橫截面積總和為.已知樹木的材積量與其根部橫截面積近似成正比.利用以上數(shù)據(jù)給出該林區(qū)這種樹木的總材積量的估計(jì)值.附:相關(guān)系數(shù).4.(2022·新高考Ⅰ卷T20)一醫(yī)療團(tuán)隊(duì)為研究某地的一種地方性疾病與當(dāng)?shù)鼐用竦男l(wèi)生習(xí)慣(衛(wèi)生習(xí)慣分為良好和不夠良好兩類)的關(guān)系,在已患該疾病的病例中隨機(jī)調(diào)查了100例(稱為病例組),同時(shí)在未患該疾病的人群中隨機(jī)調(diào)查了100人(稱為對(duì)照組),得到如下數(shù)據(jù):不夠良好良好病例組4060對(duì)照組1090(1)能否有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異?(2)從該地的人群中任選一人,A表示事件“選到的人衛(wèi)生習(xí)慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛(wèi)生習(xí)慣不夠良好對(duì)患該疾病風(fēng)險(xiǎn)程度的一項(xiàng)度量指標(biāo),記該指標(biāo)為R.(?。┳C明:;(ⅱ)利用該調(diào)查數(shù)據(jù),給出的估計(jì)值,并利用(ⅰ)的結(jié)果給出R的估計(jì)值.附,0.0500.0100.001k3.8416.63510.8285.(2022·新高考Ⅱ卷T19)在某地區(qū)進(jìn)行流行病調(diào)查,隨機(jī)調(diào)查了100名某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)頻率分布直方圖.(1)估計(jì)該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)估計(jì)該地區(qū)一人患這種疾病年齡在區(qū)間的概率;(3)已知該地區(qū)這種疾病的患病率為,該地區(qū)年齡位于區(qū)間的人口占該地區(qū)總?cè)丝诘?,從該地區(qū)任選一人,若此人年齡位于區(qū)間,求此人患該種疾病的概率.(樣本數(shù)據(jù)中的患者年齡位于各區(qū)間的頻率作為患者年齡位于該區(qū)間的概率,精確到0.0001)6.(2022·北京卷T18)在校運(yùn)動(dòng)會(huì)上,只有甲、乙、丙三名同學(xué)參加鉛球比賽,比賽成績(jī)達(dá)到以上(含)的同學(xué)將獲得優(yōu)秀獎(jiǎng).為預(yù)測(cè)獲得優(yōu)秀獎(jiǎng)的人數(shù)及冠軍得主,收集了甲、乙、丙以往的比賽成績(jī),并整理得到如下數(shù)據(jù)(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假設(shè)用頻率估計(jì)概率,且甲、乙、丙的比賽成績(jī)相互獨(dú)立.(1)估計(jì)甲在校運(yùn)動(dòng)會(huì)鉛球比賽中獲得優(yōu)秀獎(jiǎng)的概率;(2)設(shè)X是甲、乙、丙在校運(yùn)動(dòng)會(huì)鉛球比賽中獲得優(yōu)秀獎(jiǎng)的總?cè)藬?shù),估計(jì)X的數(shù)學(xué)期望E(X);(3)在校運(yùn)動(dòng)會(huì)鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計(jì)值最大?(結(jié)論不要求證明)九、立體幾何一、單選題1.(2022·全國(guó)甲(文、理)T4)如圖,網(wǎng)格紙上繪制的是一個(gè)多面體的三視圖,網(wǎng)格小正方形的邊長(zhǎng)為1,則該多面體的體積為()
A.8 B.12 C.16 D.202.(2022·全國(guó)甲(文)T9)在長(zhǎng)方體中,已知與平面和平面所成的角均為,則()A. B.AB與平面所成的角為C. D.與平面所成的角為3.(2022·全國(guó)甲(文)T10)甲、乙兩個(gè)圓錐的母線長(zhǎng)相等,側(cè)面展開圖的圓心角之和為,側(cè)面積分別為和,體積分別為和.若,則()A. B. C. D.4.(2022·全國(guó)甲(理)T7)在長(zhǎng)方體中,已知與平面和平面所成的角均為,則()A. B.AB與平面所成的角為C. D.與平面所成的角為5.(2022·全國(guó)甲(理)T8)沈括的《夢(mèng)溪筆談》是中國(guó)古代科技史上的杰作,其中收錄了計(jì)算圓弧長(zhǎng)度的“會(huì)圓術(shù)”,如圖,是以O(shè)為圓心,OA為半徑的圓弧,C是的AB中點(diǎn),D在上,.“會(huì)圓術(shù)”給出的弧長(zhǎng)的近似值s的計(jì)算公式:.當(dāng)時(shí),()
A. B. C. D.6.(2022·全國(guó)甲(理)T9)甲、乙兩個(gè)圓錐的母線長(zhǎng)相等,側(cè)面展開圖的圓心角之和為,側(cè)面積分別為和,體積分別為和.若,則()A. B. C. D.7.(2022·全國(guó)乙(文)T9)在正方體中,E,F(xiàn)分別為的中點(diǎn),則()A.平面平面 B.平面平面C.平面平面 D.平面平面8.(2022·全國(guó)乙(文)T12)已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為()A. B. C. D.9.(2022·全國(guó)乙(理)T7)在正方體中,E,F(xiàn)分別為的中點(diǎn),則()A.平面平面 B.平面平面C.平面平面 D.平面平面10.(2022·全國(guó)乙(理)T9)已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為()A. B. C. D.11.(2022·新高考Ⅰ卷T4)南水北調(diào)工程緩解了北方一些地區(qū)水資源短缺問題,其中一部分水蓄入某水庫(kù).已知該水庫(kù)水位為海拔時(shí),相應(yīng)水面的面積為;水位為海拔時(shí),相應(yīng)水面的面積為,將該水庫(kù)在這兩個(gè)水位間的形狀看作一個(gè)棱臺(tái),則該水庫(kù)水位從海拔上升到時(shí),增加的水量約為()()A. B. C. D.12.(2022·新高考Ⅰ卷T8)已知正四棱錐的側(cè)棱長(zhǎng)為l,其各頂點(diǎn)都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是()A. B. C. D.13.(2022·新高考Ⅰ卷T9)已知正方體,則()A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成的角為 D.直線與平面ABCD所成的角為14.(2022·新高考Ⅱ卷T7)正三棱臺(tái)高為1,上下底邊長(zhǎng)分別為和,所有頂點(diǎn)在同一球面上,則球的表面積是()A. B. C. D.15.(2022·新高考Ⅱ卷T11)如圖,四邊形為正方形,平面,,記三棱錐,,的體積分別為,則()A. B.C. D.16.(2022·北京卷T9)已知正三棱錐的六條棱長(zhǎng)均為6,S是及其內(nèi)部的點(diǎn)構(gòu)成的集合.設(shè)集合,則T表示的區(qū)域的面積為()A. B. C. D.17.(2022·浙江卷T8)如圖,已知正三棱柱,E,F(xiàn)分別是棱上的點(diǎn).記與所成的角為,與平面所成的角為,二面角的平面角為,則()A. B. C. D.二、解答題1.(2022·全國(guó)甲(文)T19)小明同學(xué)參加綜合實(shí)踐活動(dòng),設(shè)計(jì)了一個(gè)封閉的包裝盒,包裝盒如圖所示:底面是邊長(zhǎng)為8(單位:)的正方形,均為正三角形,且它們所在的平面都與平面垂直.(1)證明:平面;(2)求該包裝盒的容積(不計(jì)包裝盒材料的厚度).2.(2022·全國(guó)甲(理)T18)在四棱錐中,底面.(1)證明:;(2)求PD與平面所成的角的正弦值.3.(2022·全國(guó)乙(文)T18)如圖,四面體中,,E為AC的中點(diǎn).
(1)證明:平面平面ACD;(2)設(shè),點(diǎn)F在BD上,當(dāng)?shù)拿娣e最小時(shí),求三棱錐的體積.4.(2022·全國(guó)乙(理)T18)如圖,四面體中,,E為的中點(diǎn).(1)證明:平面平面;(2)設(shè),點(diǎn)F在上,當(dāng)?shù)拿娣e最小時(shí),求與平面所成的角的正弦值.5.(2022·新高考Ⅰ卷T19)如圖,直三棱柱的體積為4,的面積為.
(1)求A到平面的距離;(2)設(shè)D為的中點(diǎn),,平面平面,求二面角的正弦值.6.(2022·新高考Ⅱ卷T20)如圖,是三棱錐的高,,,E是的中點(diǎn).(1)求證:平面;(2)若,,,求二面角的正弦值.7.(2022·北京卷T17)如圖,在三棱柱中,側(cè)面為正方形,平面平面,,M,N分別為,AC的中點(diǎn).(1)求證:平面;(2)再?gòu)臈l件①、條件②這兩個(gè)條件中選擇一個(gè)作為已知,求直線AB與平面BMN所成角的正弦值.條件①:;條件②:.注:如果選擇條件①和條件②分別解答,按第一個(gè)解答計(jì)分.8.(2022·浙江卷T19)如圖,已知和都是直角梯形,,,,,,,二面角的平面角為.設(shè)M,N分別為的中點(diǎn).
(1)證明:;(2)求直線與平面所成角的正弦值.十、解析幾何一、選擇題1.(2022年全國(guó)甲卷)已知橢圓的離心率為,分別為C的左、右頂點(diǎn),B為C的上頂點(diǎn).若,則C的方程為(
)A. B. C. D.2.(2022年全國(guó)甲卷)橢圓的左頂點(diǎn)為A,點(diǎn)P,Q均在C上,且關(guān)于y軸對(duì)稱.若直線的斜率之積為,則C的離心率為(
)A. B. C. D.3.(2022年全國(guó)乙卷)設(shè)F為拋物線的焦點(diǎn),點(diǎn)A在C上,點(diǎn),若,則(
)A.2 B. C.3 D.4.(2022年全國(guó)乙卷)雙曲線C的兩個(gè)焦點(diǎn)為,以C的實(shí)軸為直徑的圓記為D,過作D的切線與C交于M,N兩點(diǎn),且,則C的離心率為(
)A. B. C. D.二、填空題1.(2022年全國(guó)甲卷)設(shè)點(diǎn)M在直線上,點(diǎn)和均在上,則的方程為______________.2.(2022年全國(guó)甲卷)記雙曲線的離心率為e,寫出滿足條件“直線與C無公共點(diǎn)”的e的一個(gè)值______________.3.(2022年全國(guó)甲卷)若雙曲線的漸近線與圓相切,則_________.4.(2022年全國(guó)乙卷)過四點(diǎn)中的三點(diǎn)的一個(gè)圓的方程為____________.5.(2022年新高考1卷)寫出與圓和都相切的一條直線的方程________________.6.(2022年新高考1卷)已知橢圓,C的上頂點(diǎn)為A,兩個(gè)焦點(diǎn)為,,離心率為.過且垂直于的直線與C交于D,E兩點(diǎn),,則的周長(zhǎng)是________________.7.(2022年新高考2卷)設(shè)點(diǎn),若直線關(guān)于對(duì)稱的直線與圓有公共點(diǎn),則a的取值范圍是________.8.(2022年新高考2卷)已知直線l與橢圓在第一象限交于A,B兩點(diǎn),l與x軸,y軸分別交于M,N兩點(diǎn),且,則l的方程為___________.三、解答題1.(2022年全國(guó)甲卷)設(shè)拋物線的焦點(diǎn)為F,點(diǎn),過F的直線交C于M,N兩點(diǎn).當(dāng)直線MD垂直于x軸時(shí),.(1)求C的方程;(2)設(shè)直線與C的另一個(gè)交點(diǎn)分別為A,B,記直線的傾斜角分別為.當(dāng)取得最大值時(shí),求直線AB的方程.【答案】(1);(2).2.(2022年全國(guó)乙卷)已知橢圓E的中心為坐標(biāo)原點(diǎn),對(duì)稱軸為x軸、y軸,且過兩點(diǎn).(1)求E的方程;(2)設(shè)過點(diǎn)的直線交E于M,N兩點(diǎn),過M且平行于x軸的直線與線段AB交于點(diǎn)T,點(diǎn)H滿足.證明:直線HN過定點(diǎn).4.(2022年新高考2卷)已知雙曲線的右焦點(diǎn)為,漸近線方程為.(1)求C的方程;(2)過F的直線與C的兩條漸近線分別交于A,B兩點(diǎn),點(diǎn)在C上,且.過P且斜率為的直線與過Q且斜率為的直線交于點(diǎn)M.從下面①②③中選取兩個(gè)作為條件,證明另外一個(gè)成立:①M(fèi)在上;②;③.注:若選擇不同的組合分別解答,則按第一個(gè)解答計(jì)分.參考答案一、集合和常用邏輯用語(yǔ)一、單選題1.【答案】D【解析】由題意,,所以,所以?U2.【答案】A【解析】因?yàn)?,,所以?.【答案】A【解析】因?yàn)?,,所以?.【答案】A【解析】由題知,對(duì)比選項(xiàng)知,正確,錯(cuò)誤5.【答案】D詳解),故,6.【答案】B【解析】,故,7.【答案】D【解析】由補(bǔ)集定義可知:?UA={x|?3<x≤?2或,即?8.【答案】D詳解),9.【答案】C【解析】設(shè)等差數(shù)列的公差為,則,記為不超過的最大整數(shù).若為單調(diào)遞增數(shù)列,則,若,則當(dāng)時(shí),;若,則,由可得,取,則當(dāng)時(shí),,所以,“是遞增數(shù)列”“存在正整數(shù),當(dāng)時(shí),”;若存在正整數(shù),當(dāng)時(shí),,取且,,假設(shè),令可得,且,當(dāng)時(shí),,與題設(shè)矛盾,假設(shè)不成立,則,即數(shù)列是遞增數(shù)列.所以,“是遞增數(shù)列”“存在正整數(shù),當(dāng)時(shí),”.所以,“是遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的充分必要條件.10.【答案】A【解析】因?yàn)榭傻茫寒?dāng)時(shí),,充分性成立;當(dāng)時(shí),,必要性不成立;所以當(dāng),是的充分不必要條件.二、復(fù)數(shù)一、單選題1.【答案】C2.【答案】D【解析】因?yàn)?,所以,所以?.【答案】A【解析】因?yàn)镽,,所以,解得:.4.【答案】A【解析】由,得,即5.【答案】D【解析】由題設(shè)有,故,故,6.【答案】D【解析】,7.【答案】B【解析】由題意有,故.8.【答案】B【解析】,而為實(shí)數(shù),故,三、不等式一、選擇題1.【答案】A【解析】由可得,而,所以,即,所以.又,所以,即,所以.綜上,.2.【答案】A【解析】因?yàn)?因?yàn)楫?dāng)所以,即,所以;設(shè),,所以在單調(diào)遞增,則,所以,所以,所以,3.【答案】C【解析】設(shè),因?yàn)?,?dāng)時(shí),,當(dāng)時(shí),所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,所以,故,即,所以,所以,故,所以,故,設(shè),則,令,,當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),,函數(shù)單調(diào)遞增,又,所以當(dāng)時(shí),,所以當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,即,所以4.【答案】BC【解析】因?yàn)椋≧),由可變形為,,解得,當(dāng)且僅當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí),,所以A錯(cuò)誤,B正確;由可變形為,解得,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以C正確;因?yàn)樽冃慰傻?,設(shè),所以,因此,所以當(dāng)時(shí)滿足等式,但是不成立,所以D錯(cuò)誤.四、平面向量一、選擇題1.【答案】D【解析】因?yàn)?,所?2.【答案】C【解析】解:∵,又∵∴9,∴3.【答案】B【解析】因?yàn)辄c(diǎn)D在邊AB上,,所以,即,所以.4.【答案】C【解析】解:,,即,解得,二、填空題1.【答案】或【解析】由題意知:,解得.2.【答案】【解析】解:設(shè)與的夾角為,因?yàn)榕c的夾角的余弦值為,即,又,,所以,所以.五、函數(shù)與導(dǎo)數(shù)一、選擇題1.【答案】A【解析】令,則,所以為奇函數(shù),排除BD;又當(dāng)時(shí),,所以,排除C.2.【答案】B【解析】因?yàn)楹瘮?shù)定義域?yàn)椋砸李}可知,,,而,所以,即,所以,因此函數(shù)在上遞增,在上遞減,時(shí)取最大值,滿足題意,即有.3.【答案】A【解析】設(shè),則,故排除B;設(shè),當(dāng)時(shí),,所以,故排除C;設(shè),則,故排除D.4.【答案】D【解析】因?yàn)榈膱D像關(guān)于直線對(duì)稱,所以,因?yàn)?,所以,即,因?yàn)?,所以,代入得,即,所以?因?yàn)?,所以,即,所?因?yàn)?,所以,又因?yàn)?,?lián)立得,,所以的圖像關(guān)于點(diǎn)中心對(duì)稱,因?yàn)楹瘮?shù)的定義域?yàn)镽,所以因?yàn)?,所?所以.5.【答案】AC【解析】由題,,令得或,令得,所以在上單調(diào)遞減,在,上單調(diào)遞增,所以是極值點(diǎn),故A正確;因,,,所以,函數(shù)在上有一個(gè)零點(diǎn),當(dāng)時(shí),,即函數(shù)在上無零點(diǎn),綜上所述,函數(shù)有一個(gè)零點(diǎn),故B錯(cuò)誤;令,該函數(shù)的定義域?yàn)?,,則是奇函數(shù),是的對(duì)稱中心,將的圖象向上移動(dòng)一個(gè)單位得到的圖象,所以點(diǎn)是曲線的對(duì)稱中心,故C正確;令,可得,又,當(dāng)切點(diǎn)為時(shí),切線方程為,當(dāng)切點(diǎn)為時(shí),切線方程為,故D錯(cuò)誤.6.【答案】BC【解析】因?yàn)?,均為偶函?shù),所以即,,所以,,則,故C正確;函數(shù),的圖象分別關(guān)于直線對(duì)稱,又,且函數(shù)可導(dǎo),所以,所以,所以,所以,,故B正確,D錯(cuò)誤;若函數(shù)滿足題設(shè)條件,則函數(shù)(C為常數(shù))也滿足題設(shè)條件,所以無法確定的函數(shù)值,故A錯(cuò)誤.7.【答案】A【解析】因?yàn)?,令可得,,所以,令可得,,即,所以函?shù)為偶函數(shù),令得,,即有,從而可知,,故,即,所以函數(shù)的一個(gè)周期為.因?yàn)椋?,,,,所以一個(gè)周期內(nèi)的.由于22除以6余4,所以.8.【答案】C【解析】,故A錯(cuò)誤,C正確;,不是常數(shù),故BD錯(cuò)誤;9.【答案】D【解析】當(dāng),時(shí),,此時(shí)二氧化碳處于固態(tài),故A錯(cuò)誤.當(dāng),時(shí),,此時(shí)二氧化碳處于液態(tài),故B錯(cuò)誤.當(dāng),時(shí),與4非常接近,故此時(shí)二氧化碳處于固態(tài),另一方面,時(shí)對(duì)應(yīng)的是非超臨界狀態(tài),故C錯(cuò)誤.當(dāng),時(shí),因,故此時(shí)二氧化碳處于超臨界狀態(tài),故D正確.10.【答案】C【解析】因?yàn)?,,即,所以.二、填空題1.【答案】①.;②..【解析】因?yàn)楹瘮?shù)為奇函數(shù),所以其定義域關(guān)于原點(diǎn)對(duì)稱.由可得,,所以,解得:,即函數(shù)的定義域?yàn)?,再由可得,.即,在定義域內(nèi)滿足,符合題意.2.【答案】【解析】解:,因?yàn)榉謩e是函數(shù)的極小值點(diǎn)和極大值點(diǎn),所以函數(shù)在和上遞減,在上遞增,所以當(dāng)時(shí),,當(dāng)時(shí),,若時(shí),當(dāng)時(shí),,則此時(shí),與前面矛盾,故不符合題意,若時(shí),則方程的兩個(gè)根為,即方程的兩個(gè)根為,即函數(shù)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),令,則,設(shè)過原點(diǎn)且與函數(shù)的圖象相切的直線的切點(diǎn)為,則切線的斜率為,故切線方程為,則有,解得,則切線的斜率為,因?yàn)楹瘮?shù)與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),所以,解得,又,所以,綜上所述,的范圍為.3.【答案】【解析】∵,∴,設(shè)切點(diǎn)為,則,切線斜率,切線方程為:,∵切線過原點(diǎn),∴,整理得:,∵切線有兩條,∴,解得或,∴的取值范圍是,4.【答案】①.②.【解析】解:因?yàn)?,?dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;5.【答案】【解析】解:因?yàn)?,所以,解得且,故函?shù)的定義域?yàn)椋?.【答案】①0(答案不唯一)②.1【解析】解:若時(shí),,∴;若時(shí),當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),,故沒有最小值,不符合題目要求;若時(shí),當(dāng)時(shí),單調(diào)遞減,,當(dāng)時(shí),∴或,解得,綜上可得;7.【答案】①.②.【解析】由已知,,所以,當(dāng)時(shí),由可得,所以,當(dāng)時(shí),由可得,所以,等價(jià)于,所以,所以的最大值為.解答題1.【答案】(1)3(2)(小問1詳解)由題意知,,,,則在點(diǎn)處的切線方程為,即,設(shè)該切線與切于點(diǎn),,則,解得,則,解得;(小問2詳解),則在點(diǎn)處的切線方程為,整理得,設(shè)該切線與切于點(diǎn),,則,則切線方程為,整理得,則,整理得,令,則,令,解得或,令,解得或,則變化時(shí),的變化情況如下表:01000則的值域?yàn)?,故的取值范圍?2.【答案】(1)(2)證明見的解析(小問1詳解)的定義域?yàn)?,?得當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增,若,則,即所以的取值范圍為(小問2詳解)由題知,一個(gè)零點(diǎn)小于1,一個(gè)零點(diǎn)大于1不妨設(shè)要證,即證因?yàn)?即證因?yàn)?即證即證即證下面證明時(shí),設(shè),則設(shè)所以,而所以,所以所以在單調(diào)遞增即,所以令所以在單調(diào)遞減即,所以;綜上,,所以.(點(diǎn)睛)關(guān)鍵點(diǎn)點(diǎn)睛:本題極值點(diǎn)偏移問題,關(guān)鍵點(diǎn)是通過分析法,構(gòu)造函數(shù)證明不等式這個(gè)函數(shù)經(jīng)常出現(xiàn),需要掌握3.【答案】(1)(2)(小問1詳解)當(dāng)時(shí),,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以;(小問2詳解),則,當(dāng)時(shí),,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,此時(shí)函數(shù)無零點(diǎn),不合題意;當(dāng)時(shí),,在上,,單調(diào)遞增;在上,,單調(diào)遞減;又,當(dāng)x趨近正無窮大時(shí),趨近于正無窮大,所以僅在有唯一零點(diǎn),符合題意;當(dāng)時(shí),,所以單調(diào)遞增,又,所以有唯一零點(diǎn),符合題意;當(dāng)時(shí),,在上,,單調(diào)遞增;在上,,單調(diào)遞減;此時(shí),又,當(dāng)n趨近正無窮大時(shí),趨近負(fù)無窮,所以在有一個(gè)零點(diǎn),在無零點(diǎn),所以有唯一零點(diǎn),符合題意;綜上,a的取值范圍為.4.【答案】(1)(2)(小問1詳解)的定義域?yàn)楫?dāng)時(shí),,所以切點(diǎn)為,所以切線斜率為2所以曲線在點(diǎn)處的切線方程為(小問2詳解)設(shè)若,當(dāng),即所以在上單調(diào)遞增,故在上沒有零點(diǎn),不合題意若,當(dāng),則所以在上單調(diào)遞增所以,即所以在上單調(diào)遞增,故在上沒有零點(diǎn),不合題意若(1)當(dāng),則,所以在上單調(diào)遞增所以存在,使得,即當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增所以當(dāng)當(dāng)所以在上有唯一零點(diǎn)又沒有零點(diǎn),即在上有唯一零點(diǎn)(2)當(dāng)設(shè)所以在單調(diào)遞增所以存在,使得當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增又所以存在,使得,即當(dāng)單調(diào)遞增,當(dāng)單調(diào)遞減有而,所以當(dāng)所以在上有唯一零點(diǎn),上無零點(diǎn)即在上有唯一零點(diǎn)所以,符合題意所以若在區(qū)間各恰有一個(gè)零點(diǎn),求的取值范圍為5.【答案】(1)(小問1詳解)的定義域?yàn)?,而,若,則,此時(shí)無最小值,故.的定義域?yàn)?,?當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.因?yàn)楹陀邢嗤淖钚≈?,故,整理得到,其中,設(shè),則,故為上的減函數(shù),而,故的唯一解為,故的解為.綜上,.(小問2詳解)由(1)可得和的最小值為.當(dāng)時(shí),考慮的解的個(gè)數(shù)、的解的個(gè)數(shù).設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,設(shè),其中,則,故在上為增函數(shù),故,故,故有兩個(gè)不同的零點(diǎn),即的解的個(gè)數(shù)為2.設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,有兩個(gè)不同的零點(diǎn)即的解的個(gè)數(shù)為2.當(dāng),由(1)討論可得、僅有一個(gè)零點(diǎn),當(dāng)時(shí),由(1)討論可得、均無零點(diǎn),故若存在直線與曲線、有三個(gè)不同的交點(diǎn),則.設(shè),其中,故,設(shè),,則,故在上為增函數(shù),故即,所以,所以在上為增函數(shù),而,,故在上有且只有一個(gè)零點(diǎn),且:當(dāng)時(shí),即即,當(dāng)時(shí),即即,因此若存在直線與曲線、有三個(gè)不同交點(diǎn),故,此時(shí)有兩個(gè)不同的零點(diǎn),此時(shí)有兩個(gè)不同的零點(diǎn),故,,,所以即即,故為方程的解,同理也為方程的解又可化為即即,故為方程的解,同理也為方程的解,所以,而,故即.(點(diǎn)睛)思路點(diǎn)睛:函數(shù)的最值問題,往往需要利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,此時(shí)注意對(duì)參數(shù)的分類討論,而不同方程的根的性質(zhì),注意利用方程的特征找到兩類根之間的關(guān)系.6.【答案】(1)的減區(qū)間為,增區(qū)間為.(2)(小問1詳解)當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,故的減區(qū)間為,增區(qū)間為.(小問2詳解)設(shè),則,又,設(shè),則,若,則,因?yàn)闉檫B續(xù)不間斷函數(shù),故存在,使得,總有,故在為增函數(shù),故,故在為增函數(shù),故,與題設(shè)矛盾.若,則,下證:對(duì)任意,總有成立,證明:設(shè),故,故在上為減函數(shù),故即成立.由上述不等式有,故總成立,即在上為減函數(shù),所以.當(dāng)時(shí),有,所以在上為減函數(shù),所以.綜上,.(小問3詳解)取,則,總有成立,令,則,故即對(duì)任意的恒成立.所以對(duì)任意的,有,整理得到:,故,故不等式成立.7.【答案】(1)(2)在上單調(diào)遞增.(3)證明見解析(小問1詳解)解:因?yàn)?,所以,即切點(diǎn)坐標(biāo)為,又,∴切線斜率∴切線方程為:(小問2詳解)解:因?yàn)?,所以,令,則,∴在上單調(diào)遞增,∴∴在上恒成立,∴上單調(diào)遞增.(小問3詳解)解:原不等式等價(jià)于,令,,即證,∵,,由(2)知在上單調(diào)遞增,∴,∴∴在上單調(diào)遞增,又因?yàn)?,∴,所以命題得證.8.【答案】(1)的減區(qū)間為,增區(qū)間為.(2)(?。┮娊馕?;(ⅱ)見解析.(小問1詳解),當(dāng),;當(dāng),,故的減區(qū)間為,的增區(qū)間為.(小問2詳解)(ⅰ)因?yàn)檫^有三條不同的切線,設(shè)切點(diǎn)為,故,故方程有3個(gè)不同的根,該方程可整理為,設(shè),則,當(dāng)或時(shí),;當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),因?yàn)橛?個(gè)不同的零點(diǎn),故且,故且,整理得到:且,此時(shí),設(shè),則,故為上的減函數(shù),故,故(ⅱ)當(dāng)時(shí),同(?。┲杏懻摽傻茫汗试谏蠟闇p函數(shù),在上為增函數(shù),不妨設(shè),則,因?yàn)橛?個(gè)不同的零點(diǎn),故且,故且,整理得到:,因?yàn)椋?,又,設(shè),,則方程即為:即為,記則為有三個(gè)不同的根,設(shè),,要證:,即證,即證:,即證:,即證:,而且,故,故,故即證:,即證:即證:,記,則,設(shè),則即,故在上為增函數(shù),故,所以,記,則,所以在為增函數(shù),故,故即,故原不等式得證:六、數(shù)列一、選擇題1.【答案】D【解析】解:設(shè)等比數(shù)列的公比為,若,則,與題意矛盾,所以,則,解得,所以.2.【答案】D【解析】解:設(shè)等比數(shù)列的公比為,若,則,與題意矛盾,所以,則,解得,所以.3.【答案】D【解析】解:因?yàn)?,所以,,得到,同理,可得,又因?yàn)?,故,;以此類推,可得,,故A錯(cuò)誤;,故B錯(cuò)誤;,得,故C錯(cuò)誤;,得,故D正確.4.【答案】D【解析】設(shè),則,依題意,有,且,所以,故,5.【答案】B【解析】∵,易得,依次類推可得由題意,,即,∴,即,,,…,,累加可得,即,∴,即,,又,∴,,,…,,累加可得,∴,即,∴,即;綜上:.二、填空題1.【答案】2【解析】由可得,化簡(jiǎn)得,即,解得.2.【答案】①③④【解析】由題意可知,,,當(dāng)時(shí),,可得;當(dāng)時(shí),由可得,兩式作差可得,所以,,則,整理可得,因?yàn)椋獾?,①?duì);假設(shè)數(shù)列為等比數(shù)列,設(shè)其公比為,則,即,所以,,可得,解得,不合乎題意,故數(shù)列不等比數(shù)列,②錯(cuò);當(dāng)時(shí),,可得,所以,數(shù)列為遞減數(shù)列,③對(duì);假設(shè)對(duì)任意,,則,所以,,與假設(shè)矛盾,假設(shè)不成立,④對(duì).三、解答題1.【答案】(1)證明見解析;(2).(小問1詳解)解:因?yàn)椋储?,?dāng)時(shí),②,①②得,,即,即,所以,且,所以是以為公差的等差數(shù)列.(小問2詳解)解:由(1)可得,,,又,,成等比數(shù)列,所以,即,解得,所以,所以,所以,當(dāng)或時(shí).2.【答案】(1)(2)見解析(小問1詳解)∵,∴,∴,又∵是公差為的等差數(shù)列,∴,∴,∴當(dāng)時(shí),,∴,整理得:,即,∴,顯然對(duì)于也成立,∴的通項(xiàng)公式;(小問2詳解)∴3.【答案】(1)證明見解析;(2).(小問1詳解)設(shè)數(shù)列的公差為,所以,,即可解得,,所以原命題得證.(小問2詳解)由(1)知,,所以,即,亦即,解得,所以滿足等式的解,故集合中的元素個(gè)數(shù)為.4.【答案】(1)是連續(xù)可表數(shù)列;不是連續(xù)可表數(shù)列.(2)證明見解析.(3)證明見解析.(小問1詳解),,,,,所以是連續(xù)可表數(shù)列;易知,不存在使得,所以不是連續(xù)可表數(shù)列.(小問2詳解)若,設(shè)為,則至多,6個(gè)數(shù)字,沒有個(gè),矛盾;當(dāng)時(shí),數(shù)列,滿足,,,,,,,,.(小問3詳解),若最多有種,若,最多有種,所以最多有種,若,則至多可表個(gè)數(shù),矛盾,從而若,則,至多可表個(gè)數(shù),而,所以其中有負(fù)的,從而可表1~20及那個(gè)負(fù)數(shù)(恰21個(gè)),這表明中僅一個(gè)負(fù)的,沒有0,且這個(gè)負(fù)的在中絕對(duì)值最小,同時(shí)中沒有兩數(shù)相同,設(shè)那個(gè)負(fù)數(shù)為,則所有數(shù)之和,,,再考慮排序,排序中不能有和相同,否則不足個(gè),(僅一種方式),與2相鄰,若不在兩端,則形式,若,則(有2種結(jié)果相同,方式矛盾),,同理,故在一端,不妨為形式,若,則(有2種結(jié)果相同,矛盾),同理不行,,則(有2種結(jié)果相同,矛盾),從而,由于,由表法唯一知3,4不相鄰,、故只能,①或,②這2種情形,對(duì)①:,矛盾,對(duì)②:,也矛盾,綜上.5.【答案】(1)(2)(小問1詳解)因?yàn)?,所以,所以,又,所以,所以,所以,(小?詳解)因?yàn)?,,成等比?shù)列,所以,,,由已知方程的判別式大于等于0,所以,所以對(duì)于任意的恒成立,所以對(duì)于任意的恒成立,當(dāng)時(shí),,當(dāng)時(shí),由,可得當(dāng)時(shí),,又所以七、三角函數(shù)與解三角形一、單選題1.【答案】C【解析】由題意知:曲線為,又關(guān)于軸對(duì)稱,則,解得,又,故當(dāng)時(shí),的最小值為.2.【答案】C【解析】解:依題意可得,因?yàn)椋?,要使函?shù)在區(qū)間恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),又,的圖象如下所示:則,解得,即.3.【答案】D【解析】,所以在區(qū)間和上,即單調(diào)遞增;在區(qū)間上,即單調(diào)遞減,又,,,所以在區(qū)間上的最小值為,最大值為.4.【答案】A【解析】由函數(shù)的最小正周期T滿足,得,解得,又因?yàn)楹瘮?shù)圖象關(guān)于點(diǎn)對(duì)稱,所以,且,所以,所以,,所以.5.【答案】C【解析】因?yàn)?對(duì)于A選項(xiàng),當(dāng)時(shí),,則在上單調(diào)遞增,A錯(cuò);對(duì)于B選項(xiàng),當(dāng)時(shí),,則在上不單調(diào),B錯(cuò);對(duì)于C選項(xiàng),當(dāng)時(shí),,則在上單調(diào)遞減,C對(duì);對(duì)于D選項(xiàng),當(dāng)時(shí),,則在上不單調(diào),D錯(cuò).6.【答案】D【解析】解:依題意如圖建立平面直角坐標(biāo)系,則,,,因?yàn)?,所以在以為圓心,為半徑的圓上運(yùn)動(dòng),設(shè),,所以,,所以,其中,,因?yàn)?,所以,即?.【答案】D【解析】因?yàn)?,所以把函?shù)圖象上的所有點(diǎn)向右平移個(gè)單位長(zhǎng)度即可得到函數(shù)的圖象.8.【答案】D【解析】由已知得:,即:,即:,所以,9.【答案】AD【解析】由題意得:,所以,,即,又,所以時(shí),,故.對(duì)A,當(dāng)時(shí),,由正弦函數(shù)圖象知在上是單調(diào)遞減;對(duì)B,當(dāng)時(shí),,由正弦函數(shù)圖象知只有1個(gè)極值點(diǎn),由,解得,即為函數(shù)的唯一極值點(diǎn);對(duì)C,當(dāng)時(shí),,,直線不是對(duì)稱軸;對(duì)D,由得:,解得或,從而得:或,所以函數(shù)在點(diǎn)處的切線斜率為,切線方程為:即.二、填空題1.【答案】【解析】設(shè),則在中,,在中,,所以,當(dāng)且僅當(dāng)即時(shí),等號(hào)成立,所以當(dāng)取最小值時(shí),.2.【答案】【解析】解:因?yàn)?,(,)所以最小正周期,因?yàn)?,又,所以,即,又為的零點(diǎn),所以,解得,因?yàn)?,所以?dāng)時(shí);3.【答案】①.1②.【解析】∵,∴∴4.【答案】.(解析)(分析)根據(jù)題中所給的公式代值解出.【解析】因?yàn)?,所以?.【答案】①.②.【解析】,∴,即,即,令,,則,∴,即,∴,則.三、解答題1.【答案】(1);(2)證明見解析.(小問1詳解)由,可得,,而,所以,即有,而,顯然,所以,,而,,所以.(小問2詳解)由可得,,再由正弦定理可得,,然后根據(jù)余弦定理可知,,化簡(jiǎn)得:,故原等式成立.2.【答案】(1)見解析(2)14(小問1詳解)證明:因?yàn)椋?,所以,即,所以;(小?詳解)解:因?yàn)?,由?)得,
由余弦定理可得,則,所以,故,所以,所以的周長(zhǎng)為.
3.【答案】(1);(2).(小問1詳解)因?yàn)?,即,而,所以;(小?詳解)由(1)知,,所以,而,所以,即有.所以.當(dāng)且僅當(dāng)時(shí)取等號(hào),所以的最小值為.4.【答案】(1)(2)(小問1詳解)由題意得,則,即,由余弦定理得,整理得,則,又,則,,則;(小問2詳解)由正弦定理得:,則,則,.5.【答案】(1)(2)(小問1詳解)解:因?yàn)椋瑒t,由已知可得,可得,因此,.(小問2詳解)解:由三角形的面積公式可得,解得.由余弦定理可得,,所以,的周長(zhǎng)為.6.【答案】(1);(2).(小問1詳解)由于,,則.因?yàn)?,由正弦定理知,則.(小問2詳解)因?yàn)?,由余弦定理,得,即,解得,而,,所以的面積.八、概率統(tǒng)計(jì)一、單選題1.【答案】B【解析】講座前中位數(shù)為,所以錯(cuò);講座后問卷答題的正確率只有一個(gè)是個(gè),剩下全部大于等于,所以講座后問卷答題的正確率的平均數(shù)大于,所以B對(duì);講座前問卷答題的正確率更加分散,所以講座前問卷答題的正確率的標(biāo)準(zhǔn)差大于講座后正確率的標(biāo)準(zhǔn)差,所以C錯(cuò);講座后問卷答題的正確率的極差為,講座前問卷答題正確率的極差為,所以錯(cuò).2.【答案】C【解析】從6張卡片中無放回抽取2張,共有15種情況,其中數(shù)字之積為4的倍數(shù)的有6種情況,故概率為.故選:C.3.【答案】C【解析】對(duì)于A選項(xiàng),甲同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)的樣本中位數(shù)為,A選項(xiàng)結(jié)論正確.對(duì)于B選項(xiàng),乙同學(xué)課外體育運(yùn)動(dòng)時(shí)長(zhǎng)的樣本平均數(shù)為:,B選項(xiàng)結(jié)論正確.對(duì)于C選項(xiàng),甲同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)大于的概率的估計(jì)值,C選項(xiàng)結(jié)論錯(cuò)誤.對(duì)于D選項(xiàng),乙同學(xué)周課外體育運(yùn)動(dòng)時(shí)長(zhǎng)大于的概率的估計(jì)值,D選項(xiàng)結(jié)論正確.4.【答案】D【解析】該棋手連勝兩盤,則第二盤為必勝盤,記該棋手在第二盤與甲比賽,且連勝兩盤的概率為則記該棋手在第二盤與乙比賽,且連勝兩盤的概率為則記該棋手在第二盤與丙比賽,且連勝兩盤的概率為則則即,,則該棋手在第二盤與丙比賽,最大.選項(xiàng)D判斷正確;選項(xiàng)BC判斷錯(cuò)誤;與該棋手與甲、乙、丙的比賽次序有關(guān).選項(xiàng)A判斷錯(cuò)誤.5.【答案】D【解析】從2至8的7個(gè)整數(shù)中隨機(jī)取2個(gè)不同的數(shù),共有種不同的取法,若兩數(shù)不互質(zhì),不同的取法有:,共7種,故所求概率.6.【答案】B【解析】因?yàn)楸∫谝黄穑劝驯±?,看做一個(gè)元素,連同乙,戊看成三個(gè)元素排列,有種排列方式;為使甲不在兩端,必須且只需甲在此三個(gè)元素的中間兩個(gè)位置任選一個(gè)位置插入,有2種插空方式;注意到丙丁兩人的順序可交換,有2種排列方式,故安排這5名同學(xué)共有:種不同的排列方式,7.【答案】B【解析】令,則,令,則,故,二、填空題1.【答案】.【解析】從正方體的個(gè)頂點(diǎn)中任取個(gè),有個(gè)結(jié)果,這個(gè)點(diǎn)在同一個(gè)平面的有個(gè),故所求概率.2.【答案】或0.3【解析】從5名同學(xué)中隨機(jī)選3名的方法數(shù)為甲、乙都入選的方法數(shù)為,所以甲、乙都入選的概率3.【答案】##.【解析】因?yàn)?,所以,因此?.【答案】①.②.【解析】含的項(xiàng)為:,故;令,即,令,即,∴,5.【答案】-28【解析】因?yàn)椋缘恼归_式中含的項(xiàng)為,的展開式中的系數(shù)為-286.【答案】①.,②.##【解析】從寫有數(shù)字1,2,2,3,4,5,6的7張卡片中任取3張共有種取法,其中所抽取的卡片上的數(shù)字的最小值為2的取法有種,所以,由已知可得的取值有1,2,3,4,,,,所以,三、解答題1.【答案】(1)A,B兩家公司長(zhǎng)途客車準(zhǔn)點(diǎn)的概率分別為,(2)有(小問1詳解)根據(jù)表中數(shù)據(jù),A共有班次260次,準(zhǔn)點(diǎn)班次有240次,設(shè)A家公司長(zhǎng)途客車準(zhǔn)點(diǎn)事件為M,則;B共有班次240次,準(zhǔn)點(diǎn)班次有210次,設(shè)B家公司長(zhǎng)途客車準(zhǔn)點(diǎn)事件為N,則.A家公司長(zhǎng)途客車準(zhǔn)點(diǎn)的概率為;B家公司長(zhǎng)途客車準(zhǔn)點(diǎn)的概率為.(小問2詳解)列聯(lián)表準(zhǔn)點(diǎn)班次數(shù)未準(zhǔn)點(diǎn)班次數(shù)合計(jì)A24020260B21030240合計(jì)45050500=,根據(jù)臨界值表可知,有的把握認(rèn)為甲、乙兩城之間的長(zhǎng)途客車是否準(zhǔn)點(diǎn)與客車所屬公司有關(guān).2.【答案】(1);(2)分布列見解析,.(小問1詳解)設(shè)甲在三個(gè)項(xiàng)目中獲勝的事件依次記為,所以甲學(xué)校獲得冠軍的概率為.(小問2詳解)依題可知,的可能取值為,所以,,,,.即分布列為01020300.160.440.340.06期望.3.【答案】(1);(2)(3)小問1詳解)樣本中10棵這種樹木的根部橫截面積的平均值樣本中10棵這種樹木的材積量的平均值據(jù)此可估計(jì)該林區(qū)這種樹木平均一棵的根部橫截面積為,平均一棵的材積量為小問2詳解)則(小問3詳解)設(shè)該林區(qū)這種樹木的總材積量的估計(jì)值為,又已知樹木的材積量與其根部橫截面積近似成正比,可得,解之得.則該林區(qū)這種樹木的總材積量估計(jì)為4.【答案】(1)答案見解析(2)(i)證明見解析;(ii);(小問1詳解)由已知,又,,所以有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異.(小問2詳解)(i)因?yàn)?,所以所以?ii)由已知,,又,,所以5.【答案】(1)歲;(2);(3).(小問1詳解)平均年齡(歲).(小問2詳解)設(shè){一人患這種疾病的年齡在區(qū)間},所以.(小問3詳解)設(shè)任選一人年齡位于區(qū)間,任選一人患這種疾病,則由條件概率公式可得.6.【答案】(1)0.4(2)(3)丙(小問1詳解)由頻率估計(jì)概率可得甲獲得優(yōu)秀的概率為0.4,乙獲得優(yōu)秀的概率為0.5,丙獲得優(yōu)秀的概率為0.5,故答案為0.4(小問2詳解)設(shè)甲獲得優(yōu)秀為事件A1,乙獲得優(yōu)秀為事件A2,丙獲得優(yōu)秀為事件A3,,,.∴X的分布列為X0123P∴(小問3詳解)丙奪冠概率估計(jì)值最大.因?yàn)殂U球比賽無論比賽幾次就取最高成績(jī).比賽一次,丙獲得9.85的概率為,甲獲得9.80的概率為,乙獲得9.78的概率為.并且丙的最高成績(jī)是所有成績(jī)中最高的,比賽次數(shù)越多,對(duì)丙越有利.九、立體幾何一、單選題1.【答案】B【解析】由三視圖還原幾何體,如圖,
則該直四棱柱的體積.2.【答案】D【解析】如圖所示:不妨設(shè),依題以及長(zhǎng)方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,,解得.對(duì)于A,,,,A錯(cuò)誤;對(duì)于B,過作于,易知平面,所以與平面所成角為,因?yàn)?,所以,B錯(cuò)誤;對(duì)于C,,,,C錯(cuò)誤;對(duì)于D,與平面所成角為,,而,所以.D正確.3.【答案】C【解析】解:設(shè)母線長(zhǎng)為,甲圓錐底面半徑為,乙圓錐底面圓半徑為,則,所以,又,則,所以,所以甲圓錐的高,乙圓錐的高,所以.4.【答案】D【解析】如圖所示:不妨設(shè),依題以及長(zhǎng)方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,,解得.對(duì)于A,,,,A錯(cuò)誤;對(duì)于B,過作于,易知平面,所以與平面所成角為,因?yàn)?,所以,B錯(cuò)誤;對(duì)于C,,,,C錯(cuò)誤;對(duì)于D,與平面所成角為,,而,所以.D正確.5.【答案】B【解析】解:如圖,連接,因?yàn)槭堑闹悬c(diǎn),所以,又,所以三點(diǎn)共線,即,又,所以,則,故,所以.6.【答案】C【解析】解:設(shè)母線長(zhǎng)為,甲圓錐底面半徑為,乙圓錐底面圓半徑為,則,所以,又,則,所以,所以甲圓錐的高,乙圓錐的高,所以.7.【答案】A8.【答案】C【解析】設(shè)該四棱錐底面為四邊形ABCD,四邊形ABCD所在小圓半徑為r,設(shè)四邊形ABCD對(duì)角線夾角為,則(當(dāng)且僅當(dāng)四邊形ABCD為正方形時(shí)等號(hào)成立)即當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為又則當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,9.【答案】A【解析】解:在正方體中,且平面,又平面,所以,因?yàn)榉謩e為的中點(diǎn),所以,所以,又,所以平面,又平面,所以平面平面,故A正確;如圖,以點(diǎn)原點(diǎn),建立空間直角坐標(biāo)系,設(shè),則,,則,,設(shè)平面的法向量為,則有,可取,同理可得平面的法向量為,平面的法向量為,平面的法向量為,則,所以平面與平面不垂直,故B錯(cuò)誤;因?yàn)榕c不平行,所以平面與平面不平行,故C錯(cuò)誤;因?yàn)榕c不平行,所以平面與平面不平行,故D錯(cuò)誤,10.【答案】C【解析】設(shè)該四棱錐底面為四邊形ABCD,四邊形ABCD所在小圓半徑為r,設(shè)四邊形ABCD對(duì)角線夾角為,則(當(dāng)且僅當(dāng)四邊形ABCD為正方形時(shí)等號(hào)成立)即當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為又則當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,11.【答案】C【解析】依題意可知棱臺(tái)的高為(m),所以增加的水量即為棱臺(tái)的體積.棱臺(tái)上底面積,下底面積,∴.12.【答案】C【解析】∵球的體積為,所以球的半徑,設(shè)正四棱錐的底面邊長(zhǎng)為,高為,則,,所以,所以正四棱錐的體積,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),正四棱錐的體積取最大值,最大值為,又時(shí),,時(shí),,所以正四棱錐的體積的最小值為,所以該正四棱錐體積的取值范圍是.13.【答案】ABD【解析】如圖,連接、,因?yàn)?,所以直線與所成的角即為直線與所成的角,因?yàn)樗倪呅螢檎叫?,則,故直線與所成的角為,A正確;連接,因?yàn)槠矫妫矫?,則,因?yàn)?,,所以平面,又平面,所以,故B正確;連接,設(shè),連接,因?yàn)槠矫?,平面,則,因?yàn)椋?,所以平面,所以為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,則,,,所以,直線與平面所成的角為,故C錯(cuò)誤;因?yàn)槠矫?,所以為直線與平面所成的角,易得,故D正確.14.【答案】A【解析】設(shè)正三棱臺(tái)上下底面所在圓面的半徑,所以,即,設(shè)球心到上下底面的距離分別為,球的半徑為,所以,,故或,即或,解得符合題意,所以球的表面積為.15.【答案】CD【解析】設(shè),因?yàn)槠矫?,,則,,連接交于點(diǎn),連接,易得,又平面,平面,則,又,平面,則平面,又,過作于,易得四邊形為矩形,則,則,,,則,,,則,則,,,故A、B錯(cuò)誤;C、D正確.16.【答案】B【解析】設(shè)頂點(diǎn)在底面上的投影為,連接,則為三角形的中心,且,故.因?yàn)?,故,故的軌跡為以為圓心,1為半徑的圓,而三角形內(nèi)切圓的圓心為,半徑為,故的軌跡圓在三角形內(nèi)部,故其面積為17.【答案】A【解析】如圖所示,過點(diǎn)作于,過作于,連接,則,,,,,,所以,二、解答題1.【答案】(1)證明見解析;(2).(小問1詳解)如圖所示:,分別取的中點(diǎn),連接,因?yàn)闉槿鹊恼切?,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根?jù)線面垂直的性質(zhì)定理可知,而,所以四邊形為平行四邊形,所以,又平面,平面,所以平面.(小問2詳解)如圖所示:,分別取中點(diǎn),由(1)知,且,同理有,,,,由平面知識(shí)可知,,,,所以該幾何體的體積等于長(zhǎng)方體的體積加上四棱錐體積的倍.因?yàn)?,,點(diǎn)到平面的距離即為點(diǎn)到直線的距離,,所以該幾何體的體積.2.【答案】(1)證明見解析;(2).(小問1詳解)證明:在四邊形中,作于,于,因?yàn)?,所以四邊形為等腰梯形,所以,故,,所以,所以,因?yàn)槠矫?,平面,所以,又,所以平面,又因平面,所以;(小?詳解)解:如圖,以點(diǎn)原點(diǎn)建立空間直角坐標(biāo)系,,則,則,設(shè)平面的法向量,
則有,可取,則,所以與平面所成角的正弦值為.3.【答案】(1)證明詳見解析(2)(小問1詳解)由于,是的中點(diǎn),所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(小問2詳解)依題意,,三角形是等邊三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以當(dāng)最短時(shí),三角形的面積最小值.過作,垂足為,在中,,解得,所以,所以過作,垂足為,則,所以平面,且,所以,所以.4.【答案】(1)證明過程見解析(2)與平面所成的角的正弦值為(小問1詳解)因?yàn)椋珽為的中點(diǎn),所以;在和中,因?yàn)?,所以,所以,又因?yàn)镋為的中點(diǎn),所以;又因?yàn)槠矫?,,所以平面,因?yàn)槠矫?,所以平面平?(小問2詳解)連接,由(1)知,平面,因?yàn)槠矫妫?,所以,?dāng)時(shí),最小,即的面積最小.因?yàn)?,所以,又因?yàn)?,所以是等邊三角形,因?yàn)镋為的中點(diǎn),所以,,因?yàn)椋?在中,,所以.以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,所以,設(shè)平面的一個(gè)法向量為,則,取,則,又因?yàn)?,所以,所以,設(shè)與平面所成的角的正弦值為,所以,所以與平面所成的角的正弦值為.5.【答案】(1)(2)(小問1詳解)在直三棱柱中,設(shè)點(diǎn)A到平面的距離為h,則,解得,所以點(diǎn)A到平面的距離為;(小問2詳解)取的中點(diǎn)E,連接AE,如圖,因?yàn)?,所?又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,又平面且相交,所以平面,所以兩兩垂直,以B為原點(diǎn),建立空間直角坐標(biāo)系,如圖,由(1)得,所以,,所以,則,所以的中點(diǎn),則,,設(shè)平面的一個(gè)法向量,則,可取,設(shè)平面的一個(gè)法向量,則,可取,則,所以二面角的正弦值為.6.【答案】(1)證明見解析(2)小問1詳解)證明:連接并延長(zhǎng)交于點(diǎn),連接、,因?yàn)槭侨忮F的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,,所以所以,即,所以為的中點(diǎn),又為的中點(diǎn),所以,又平面,平面,所以平面(小問2詳解)解:過點(diǎn)作,如圖建立平面直角坐標(biāo)系,因?yàn)?,,所以,又,所以,則,,所以,所以,,,,所以,則,,,設(shè)平面法向量為,則,令,則,,所以;設(shè)平面的法向量為,則,令,則,,所以;所以設(shè)二面角為,由圖可知二面角為鈍二面角,所以,所以故二面角的正弦值為;7.【答案】(1)見解析(2)見解析(小問1詳解)取的中點(diǎn)為,連接,由三棱柱可得四邊形為平行四邊形,而,則,而平面,平面,故平面,而,則,同理可得平面,而平面,故平面平面,而平面,故平面,(小問2詳解)因?yàn)閭?cè)面為正方形,故,而平面,平面平面,平面平面,故平面,因?yàn)?,故平面,因?yàn)槠矫妫?,若選①,則,而,,故平面,而平面,故,所以,而,,故平面,故可建立如所示的空間直角坐標(biāo)系,則,故,設(shè)平面的法向量為,則,從而,取,則,設(shè)直線與平面所成的角為,則.若選②,因?yàn)?,故平面,而平面,故,而,故,而,,故,所以,故,而,,故平面,故可建立如所示的空間直角坐標(biāo)系,則,故,設(shè)平面的法向量為,則,從而,取,則,設(shè)直線與平面所成的角為,則.8.【答案】(1)證明見解析;(2).(小問1詳解)過點(diǎn)、分別做直線、的垂線、并分別交于點(diǎn)交于點(diǎn)、.∵四邊形和都是直角梯形,,,由平面幾何知識(shí)易知,,則四邊形和四邊形是矩形,∴在Rt和Rt,,∵,且,∴平面是二面角的平面角,則,∴是正三角形,由平面,得平面平面,∵是的中點(diǎn),,又平面,平面,可得,而,∴平面,而平面.(小問2詳解)因?yàn)槠矫?,過點(diǎn)做平行線,所以以點(diǎn)為原點(diǎn),,、所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,設(shè),則,設(shè)平面的法向量為由,得,取,設(shè)直線與平面所成角為,∴.十、解析幾何一、選擇題1.【答案】B【解析】解:因?yàn)殡x心率,解得,,分別為C的左右頂點(diǎn),則,B為上頂點(diǎn),所以.所以,因?yàn)樗?,將代入,解得,故橢圓的方程為.2.【答案】A【解析】解法1:設(shè)而不求設(shè),則則由得:,由,得,所以,即,所以橢圓的離心率,故選A.解法2:第三定義設(shè)右端點(diǎn)為B,連接PB,由橢圓的對(duì)稱性知:故,由橢圓第三定義得:,故所以橢圓的離心率,故選A.3.【答案】B【解析】由題意得,,則,即點(diǎn)到準(zhǔn)線的距離為2,所以點(diǎn)的橫坐標(biāo)為,不妨設(shè)點(diǎn)在軸上方,代入得,,所以.4.【答案】AC【解析】方法一(幾何法,雙曲線定義的應(yīng)用)情況一M、N在雙曲線的同一支,依題意不妨設(shè)雙曲線焦點(diǎn)在軸,設(shè)過作圓的切線切點(diǎn)為B,所以,因?yàn)?,所以在雙曲線的左支,,,,設(shè),由即,則,選A情況二若M、N在雙曲線的兩支,因?yàn)?,所以在雙曲線的右支,所以,,,設(shè),由,即,則,所以,即,所以雙曲線的離心率選C方法二(答案回代法)特值雙曲線,過且與圓相切的一條直線為,兩交點(diǎn)都在左支,,,則,特值雙曲線,過且與圓相切的一條直線為,兩交點(diǎn)在左右兩支,在右支,,,則,解法三:依題意不妨設(shè)雙曲線焦點(diǎn)在軸,設(shè)過作圓的切線切點(diǎn)為,若分別在左右支,因?yàn)?,且,所以在雙曲線的右支,又,,,設(shè),,在中,有,故即,所以,而,,,故,代入整理得到,即,所以雙曲線的離心率若均在左支上,同理有,其中為鈍角,故,故即,代入,,,整理得到:,故,故,二、填空題1.【答案】【解析】方法一:(三點(diǎn)共圓)∵點(diǎn)M在直線上,∴設(shè)點(diǎn)M為,又因?yàn)辄c(diǎn)和均在上,∴點(diǎn)M到兩點(diǎn)的距離相等且為半徑R,∴,,解得,∴,,的方程為.方法二:(圓的幾何性質(zhì))由題可知,M是以(3,0)和(0,1)為端點(diǎn)的線段垂直平分線y=3x-4與直線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 飛機(jī)搜救知識(shí)培訓(xùn)課件
- 農(nóng)村開園活動(dòng)策劃方案(3篇)
- 慶陽(yáng)美食活動(dòng)策劃方案(3篇)
- 2026廣東佛山順德區(qū)杏壇鎮(zhèn)林文恩中學(xué)招聘臨聘教師4人備考考試題庫(kù)及答案解析
- 2026年上半年黑龍江事業(yè)單位聯(lián)考省衛(wèi)生健康委員會(huì)招聘125人備考考試試題及答案解析
- 飛機(jī)介紹科普
- 2026廣西北海市銀海區(qū)福成鎮(zhèn)人民政府招錄公益性崗位人員12人參考考試題庫(kù)及答案解析
- 2026湖北武漢大型電池制造型企業(yè)招聘?jìng)淇伎荚囶}庫(kù)及答案解析
- 2026年福建莆田市城廂區(qū)霞林學(xué)校小學(xué)部自主招聘編外教師2人備考考試題庫(kù)及答案解析
- 2026山東菏澤國(guó)花中等職業(yè)學(xué)校機(jī)電學(xué)科教師招聘?jìng)淇伎荚囋囶}及答案解析
- 《微生物與殺菌原理》課件
- GB/T 18376.2-2024硬質(zhì)合金牌號(hào)第2部分:鑿巖及工程用硬質(zhì)合金牌號(hào)
- 醫(yī)院總值班培訓(xùn)-文檔資料
- 施工影像資料交底
- 中國(guó)急性胰腺炎診治指南解讀2019
- 2023年杭州市臨平區(qū)事業(yè)單位筆試試題
- 幼兒學(xué)前班數(shù)學(xué)寒假作業(yè)25
- 2024年鋼絲繩索具相關(guān)項(xiàng)目創(chuàng)業(yè)計(jì)劃書
- 幼小銜接數(shù)學(xué)計(jì)算每日一練39天(幼兒園大班)
- 基于蛋白代謝多組學(xué)探討參麻益智方治療高血壓合并血管性癡呆大鼠作用機(jī)制演示稿件
- 上海布邦流體過濾產(chǎn)品知識(shí)課件
評(píng)論
0/150
提交評(píng)論