版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省阜陽市潁州區(qū)第三中學(xué)高二上數(shù)學(xué)期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.(2016新課標(biāo)全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點,點M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.22.已知,是橢圓的左,右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.3.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.4.已知拋物線的焦點為,點在拋物線上,且,則的橫坐標(biāo)為()A.1 B.C.2 D.35.在正方體中,分別為的中點,為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.6.若直線經(jīng)過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.7.已知函數(shù),則的值為()A. B.0C.1 D.8.已知是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.焦點坐標(biāo)為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.10.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.11.曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.1512.圓心在x軸負(fù)半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是數(shù)列的前項和,且,,則__________14.橢圓的離心率是______15.設(shè)函數(shù)滿足,則______.16.已知一個樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項公式;(3)當(dāng)水溫在40℃到55℃之間時(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個時間段飲用最佳.(參考數(shù)據(jù):)18.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.19.(12分)已知拋物線C:,直線l經(jīng)過點,且與拋物線C交于M,N兩點,其中.(1)若,且,求點M的坐標(biāo);(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標(biāo)原點O,若存在,請求出正數(shù)m,若不存在,請說明理由.20.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.21.(12分)在等差數(shù)列中,設(shè)前項和為,已知,.(1)求的通項公式;(2)令,求數(shù)列的前項和.22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B.(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補(bǔ)充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由已知可得,故選A.考點:1、雙曲線及其方程;2、雙曲線的離心率.【方法點晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強(qiáng),屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計算量,提高解題速度.2、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因為等腰三角形,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.3、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B4、C【解析】利用拋物線的定義轉(zhuǎn)化為到準(zhǔn)線的距離,即可求得.【詳解】拋物線的焦點坐標(biāo)為,準(zhǔn)線方程為,,∴,故選:C.5、A【解析】建立空間直角坐標(biāo)系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標(biāo)原點,DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A6、D【解析】應(yīng)用兩點式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D7、B【解析】求導(dǎo),代入,求出,進(jìn)而求出.【詳解】,則,即,解得:,故,所以故選:B8、D【解析】根據(jù)復(fù)數(shù)的幾何意義即可確定復(fù)數(shù)所在象限【詳解】復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第四象限故選:D9、D【解析】依次確定選項中各個拋物線的焦點坐標(biāo)即可.【詳解】對于A,的焦點坐標(biāo)為,A錯誤;對于B,的焦點坐標(biāo)為,B錯誤;對于C,焦點坐標(biāo)為,C錯誤;對于D,的焦點坐標(biāo)為,D正確.故選:D.10、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A11、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.12、A【解析】根據(jù)題意,設(shè)圓心為坐標(biāo)為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設(shè)圓心為坐標(biāo)為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標(biāo)為,故所求圓的方程為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項,-1為公差的等差的數(shù)列,所以,即.【點睛】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項公式.14、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.15、5【解析】考點:函數(shù)導(dǎo)數(shù)與求值16、①.不變②.變大【解析】通過計算平均數(shù)和方差來確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進(jìn)而求出的通項公式.(3)由(2)的結(jié)論列不等式,借助對數(shù)函數(shù)的性質(zhì)求解即得.【小問1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當(dāng)時,,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問2詳解】由(1)知,,時,,,則有,即,而,于是得是以為首項,為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項公式是,.【小問3詳解】由(2)及已知得:,即,整理得,兩邊取常用對數(shù)得:,而,解得,即,所以在水燒開后4到7分鐘飲用最佳.【點睛】思路點睛:涉及實際意義給出的數(shù)列問題,正確理解實際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項間關(guān)系即可推理作答.18、(1)證明見解析(2)【解析】(1)取的中點F,連接EF,,由四邊形是平行四邊形即可求解;(2)采用建系法,以為軸,為軸,垂直底面方向為軸,求出對應(yīng)點坐標(biāo),結(jié)合二面角夾角余弦公式即可求解.【小問1詳解】取的中點F,連接EF,,∵,∴,且,∴,∴四邊形是平行四邊形,∴,又平面,平面,∴平面;【小問2詳解】取AC的中點O,以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,,,∴,.設(shè)平面的法向量是,則,即,令,得,易知平面的一個法向量是,∴,又二面角是鈍二面角,∴二面角的余弦值為.19、(1)或(2)存在,【解析】(1)確定點為拋物線的焦點,則根據(jù)拋物線的焦半徑公式,結(jié)合拋物線方程,求得答案;(2)假設(shè)存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標(biāo)原點O,可推得,由此可設(shè)直線方程,聯(lián)立拋物線方程,利用根與系數(shù)的關(guān)系,代入到中,可得結(jié)論.【小問1詳解】依題意得為的焦點,故,解得,故,則∴點的坐標(biāo)或;【小問2詳解】假設(shè)存在正數(shù),使得以為直徑的圓經(jīng)過坐標(biāo)原點,∴,設(shè)直線:,,,由,得,則,,∵,,∴,解得或(舍去)所以存在正數(shù),使得以為直徑的圓經(jīng)過坐標(biāo)原點.20、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設(shè)點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標(biāo),再進(jìn)行數(shù)量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙曲線的頂點坐標(biāo)滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設(shè)點,,,,,由,得,整理得,①,把①代入,整理得②,因為,,所以.由,得,則,當(dāng)且僅當(dāng)時等號成立,所以的最小值是1.21、(1)(2)【解析】(1)根據(jù)等差數(shù)列的前項和公式,即可求解公差,再計算通項公式;(2)根據(jù)(1)的結(jié)果,利用裂項相消法求和.【小問1詳解】設(shè)的公差為,由已知得,解得,所以.【小問2詳解】所以.22、(1)(2)答案見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在藥物臨床試驗中的臨床價值
- 深度解析(2026)《GBT 20065-2016預(yù)應(yīng)力混凝土用螺紋鋼筋》(2026年)深度解析
- 生活質(zhì)量終點在慢性病藥物臨床價值重構(gòu)中的核心作用
- 融資方案設(shè)計面試題及答案
- 深度解析(2026)《GBT 19509-2004鋸齒衣分試軋機(jī)》
- 深度解析(2026)《GBT 19448.7-2004圓柱柄刀夾 第7部分裝錐柄刀具的F型刀夾》
- 瓣膜介入術(shù)后抗凝管理策略
- 人工智能工程師考試題集含答案
- 教育機(jī)構(gòu)教學(xué)設(shè)備采購負(fù)責(zé)人的答案解析
- 醫(yī)學(xué)影像云存儲:容災(zāi)備份與數(shù)據(jù)恢復(fù)方案
- 2025年衛(wèi)生系統(tǒng)招聘(臨床專業(yè)知識)考試題庫(含答案)
- 基建工程索賠管理人員索賠管理經(jīng)典文獻(xiàn)
- 工業(yè)機(jī)器人專業(yè)大學(xué)生職業(yè)生涯規(guī)劃書
- 農(nóng)貿(mào)市場消防安全管理制度
- 良品鋪子營運能力分析及對策研究
- 特種設(shè)備應(yīng)急處置課件
- 2025年科研年度個人工作總結(jié)(3篇)
- 熱力管網(wǎng)建設(shè)工程方案投標(biāo)文件(技術(shù)方案)
- 【《球閥的測繪方法概述》2900字】
- 2025-2030精釀啤酒行業(yè)標(biāo)準(zhǔn)制定進(jìn)程與質(zhì)量監(jiān)管體系完善報告
評論
0/150
提交評論