版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣西玉林高中高二上數(shù)學(xué)期末調(diào)研試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.2.已知橢圓的一個焦點坐標(biāo)是,則()A.5 B.2C.1 D.3.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.4.在等差數(shù)列中,,表示數(shù)列的前項和,則()A.43 B.44C.45 D.465.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或46.已知拋物線的焦點為,為拋物線上一點,為坐標(biāo)原點,且,則()A.4 B.2C. D.7.下列求導(dǎo)運算正確的是()A. B.C. D.8.在空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)為()A. B.C. D.9.函數(shù)在處有極值為,則的值為()A. B.C. D.10.已知橢圓:的左、右焦點分別為、,為坐標(biāo)原點,為橢圓上一點.與軸交于一點,,則橢圓C的離心率為()A. B.C. D.11.設(shè),則是的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件12.已知拋物線的焦點為F,準(zhǔn)線為l,點P在拋物線上,直線PF交x軸于Q點,且,則點P到準(zhǔn)線l的距離為()A.4 B.5C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點作直線,直線與連接兩點線段總有公共點,則直線的斜率的取值范圍是________14.直線與兩坐標(biāo)軸相交于,兩點,則線段的垂直平分線的方程為___________.15.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.16.過拋物線的焦點作傾斜角為的直線,與拋物線分別交于兩點(點在軸上方),_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,求的極值;(2)討論的單調(diào)性18.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)證明:對任意正整數(shù)n,19.(12分)已知函數(shù),其中常數(shù),(1)求單調(diào)區(qū)間;(2)若且對任意,都有,證明:方程有且只有兩個實根20.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標(biāo)原點),當(dāng)直線的傾斜角為銳角時,求的取值范圍21.(12分)已知平面內(nèi)兩點,,動點P滿足(1)求動點P的軌跡方程;(2)過定點的直線l交動點P的軌跡于不同的兩點M,N,點M關(guān)于y軸對稱點為,求證直線過定點,并求出定點坐標(biāo)22.(10分)已知圓心C的坐標(biāo)為,且是圓C上一點(1)求圓C的標(biāo)準(zhǔn)方程;(2)過點的直線l被圓C所截得的弦長為,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B2、C【解析】根據(jù)題意橢圓焦點在軸上,且,將橢圓方程化為標(biāo)準(zhǔn)形式,從而得出,得出答案.【詳解】由焦點坐標(biāo)是,則橢圓焦點在軸上,且將橢圓化為,則由,焦點坐標(biāo)是,則,解得故選:C3、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得4、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.5、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學(xué)生對該知識的理解掌握水平.6、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標(biāo)運算,考查了求拋物線方程,屬于基礎(chǔ)題.7、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和求導(dǎo)法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導(dǎo)數(shù)公式,考查導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.8、B【解析】結(jié)合已知條件,利用對稱的概念即可求解.【詳解】不妨設(shè)點關(guān)于軸對稱的點的坐標(biāo)為,則線段垂直于軸且的中點在軸,從而點關(guān)于軸對稱的點的坐標(biāo)為.故選:B.9、B【解析】根據(jù)函數(shù)在處有極值為,由,求解.【詳解】因為函數(shù),所以,所以,,解得a=6,b=9,=-3,故選:B10、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C11、B【解析】,,所以是必要不充分條件,故選B.考點:1.指、對數(shù)函數(shù)的性質(zhì);2.充分條件與必要條件.12、C【解析】根據(jù)題干條件得到相似,進(jìn)而得到,求出點P到準(zhǔn)線l的距離.【詳解】由題意得:,準(zhǔn)線方程為,因為,所以,故點P到準(zhǔn)線l的距離為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出的斜率,結(jié)合圖形可得結(jié)論【詳解】,,而,因此,故答案為:14、【解析】由直線的方程求出直線的斜率以及,兩點坐標(biāo),進(jìn)而可得線段的垂直平分線的斜率以及線段的中點坐標(biāo),利用點斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點坐標(biāo)為,所以線段的垂直平分線的方程為,整理得.故答案為:.15、##【解析】把該幾何體補(bǔ)成一個正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補(bǔ)成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:16、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,無極大值(2)答案見解析【解析】(1)求出導(dǎo)函數(shù),由得增區(qū)間,得減區(qū)間,從而得極值;(2)求出導(dǎo)函數(shù),分類討論確定和解得單調(diào)性小問1詳解】當(dāng)時,,(x>0)則令,得,得,得,所以的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.所以的極小值為f(2)=,無極大值.【小問2詳解】令則當(dāng)時,在上單調(diào)遞減.當(dāng)時,,得,,得;,得在上單調(diào)遞減,在上單調(diào)遞增,綜上所述,當(dāng)時,在上單調(diào)遞減.當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.18、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關(guān)系,即可判定函數(shù)的單調(diào)性;(2)當(dāng)時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當(dāng),即時,若,則,遞增;若,則,遞減;②當(dāng),即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當(dāng)-2<a<0時,f(x)在,單調(diào)遞減,在單調(diào)遞增;當(dāng)a≥0時,f(x)在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】由(2)知當(dāng)時,在,上遞減,,即,,,,2,3,,,,【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,本題的關(guān)鍵是令a=1,用已知函數(shù)的單調(diào)性構(gòu)造,再令x=恰當(dāng)?shù)乩脤?shù)求和進(jìn)行解題19、(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),談?wù)搮?shù)的范圍,根據(jù)導(dǎo)數(shù)的正負(fù),可得單調(diào)區(qū)間;(2)由已知可解得,構(gòu)造函數(shù),再根據(jù)(1)的結(jié)論,可知函數(shù)的單調(diào)性,結(jié)合零點存在定理,可證明結(jié)論.【小問1詳解】定義域為,因為,若,,所以單調(diào)遞減區(qū)間為,若,,當(dāng)時,,當(dāng)時,,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】證明:若且對任意,都有,則在處取得最小值,由(1)得在取得最小值,得,令,則單調(diào)性相同,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,且,,,所以在(1e2,所以在和各有且僅有一個零點,即方程有且只有兩個實根20、(1)(2)【解析】(1)根據(jù)橢圓的長軸和離心率,可求得,進(jìn)而得橢圓方程;(2)先判斷直線斜率為正,然后設(shè)出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關(guān)系,利用直線方程求出點S、T的坐標(biāo),再根據(jù)確定的表達(dá)式,將根與系數(shù)的關(guān)系式代入化簡,求得結(jié)果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當(dāng)直線l的傾斜角為銳角時,設(shè),設(shè)直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是21、(1)(2)證明見解析,定點坐標(biāo)為【解析】(1)直接由斜率關(guān)系計算得到;(2)設(shè)出直線,聯(lián)立橢圓方程,韋達(dá)定理求出,再結(jié)合三點共線,求出參數(shù),得到過定點.小問1詳解】設(shè)動點,由已知有,整理得,所以動點的軌跡方程為;【小問2詳解】由已知條件可知直線和直線斜率一定存在,設(shè)直線方程為,,,則,由,可得,則,即為,,,因為直線過定點,所以三點共線,即,即,即,即,即得,整理,得,滿足,則直線方程為,恒過定點.【點睛】本題關(guān)鍵在于設(shè)出帶有兩個參數(shù)的直線的方程,聯(lián)立橢圓方程后,利用題干中的條件,解出一個參數(shù)或得到兩個參數(shù)之間的關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手指骨折協(xié)議書
- 混凝土終止協(xié)議書
- 苗木管護(hù)合同范本
- 薩內(nèi)轉(zhuǎn)會協(xié)議書
- 螃蟹訂貨協(xié)議書
- 視頻播出協(xié)議書
- 設(shè)備交付協(xié)議書
- 設(shè)備建造合同范本
- 訴調(diào)對接協(xié)議書
- 請假離職協(xié)議書
- 2025呼倫貝爾莫旗消防救援大隊招聘消防文員(公共基礎(chǔ)知識)綜合能力測試題附答案解析
- 《國家賠償法》期末終結(jié)性考試(占總成績50%)-國開(ZJ)-參考資料
- 社會能力訓(xùn)練教程
- 廣東省廣州市番禺區(qū)2024-2025學(xué)年七年級上學(xué)期語文期末考試試卷(含答案)
- 2025年河南高二政治題庫及答案
- 創(chuàng)新激勵機(jī)制
- 產(chǎn)品成熟度評估標(biāo)準(zhǔn)文檔
- 2025年浙江衢州龍游經(jīng)濟(jì)開發(fā)區(qū)下屬國資公司公開招聘普通崗位合同制員工11人筆試考試參考題庫附答案解析
- 城市給水管線工程初步設(shè)計
- 考研咨詢師員工培訓(xùn)方案
- 人工智能+跨學(xué)科人才培養(yǎng)模式創(chuàng)新分析報告
評論
0/150
提交評論