版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市虹口區(qū)復興高中數(shù)學高二上期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準線的距離為3,則AF的中點到準線的距離為()A.1 B.2C.3 D.42.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.3.已知函數(shù),若對任意的,,且,總有,則的取值范圍是()A B.C. D.4.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.命題“”為真命題一個充分不必要條件是()A. B.C. D.6.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.67.已知空間向量,,,則()A.4 B.-4C.0 D.28.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.409.若,則()A.0 B.1C. D.210.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A B.C. D.11.已知直線過點,,則該直線的傾斜角是()A. B.C. D.12.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲口袋中裝有2個黑球和1個白球,乙口袋中裝有3個白球.現(xiàn)同時從甲、乙兩口袋中各任取一個球交換放入對方口袋,共進行了2次這樣的操作后,甲口袋中恰有2個黑球的概率為__________________.14.在等比數(shù)列中,若,是方程兩根,則________.15.已知數(shù)列滿足,,則_________.16.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).18.(12分)已知橢圓的左焦點為,上頂點為,直線與橢圓的另一個交點為A(1)求點A的坐標;(2)過點且斜率為的直線與橢圓交于,兩點(均與A,不重合),過點與軸垂直的直線分別交直線,于點,,證明:點,關(guān)于軸對稱19.(12分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數(shù)列.20.(12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值21.(12分)已知拋物線y2=8x.(1)求出該拋物線的頂點、焦點、準線、對稱軸、變量x的范圍;(2)以坐標原點O為頂點,作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點F是△OAB的重心,求△OAB的周長22.(10分)在平面直角坐標系中,點,直線軸,垂足為H,,圓N過點O,與l的公共點的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點,若,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點到準線的距離【詳解】拋物線方程為,則,由于中點到準線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點到準線的距離為.故選:C2、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負),故.故選:D.3、B【解析】根據(jù)函數(shù)單調(diào)性定義、二次函數(shù)性質(zhì)及對稱軸方程,即可求解參數(shù)取值范圍.【詳解】依題意可得,在上為減函數(shù),則,即的取值范圍是故選:B【點睛】本題考查函數(shù)單調(diào)性定義,二次函數(shù)性質(zhì),屬于基礎(chǔ)題.4、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.5、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B6、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C7、A【解析】根據(jù)空間向量平行求出x,y,進而求得答案.【詳解】因為,所以存在實數(shù),使得,則.故選:A.8、D【解析】根據(jù)等比數(shù)列的通項公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D9、D【解析】由復數(shù)的乘方運算求,再求模即可.【詳解】由題設(shè),,故2.故選:D10、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A11、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C12、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.14、.【解析】由題意求得,,再結(jié)合等比數(shù)列的性質(zhì),即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、【解析】由已知可知即數(shù)列是首項為1,公差為1的等差數(shù)列,進而可求得數(shù)列的通項公式,即可求.【詳解】由題意知:,即,而,∴數(shù)列是首項為1,公差為1的等差數(shù)列,有,∴,則.故答案為:【點睛】關(guān)鍵點點睛:由遞推關(guān)系求數(shù)列的通項,進而得到的通項公式寫出項.16、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,可得雙曲線方程為,設(shè),則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設(shè),則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解(2)證明見詳解【解析】利用函數(shù)奇偶性的定義證明即可【小問1詳解】由題意函數(shù)定義域為且故是上的偶函數(shù)【小問2詳解】由題意函數(shù)定義域為且故是上奇函數(shù)18、(1)(2)證明見解析【解析】(1)先求出直線的方程,聯(lián)立直線與橢圓,求出A點坐標;(2)設(shè)出直線方程,聯(lián)立橢圓方程,用韋達定理得到兩根之和,兩根之積,求出兩點的縱坐標,證明出,即可證明關(guān)于軸對稱.【小問1詳解】由題意得,,所以直線方程為,與橢圓方程聯(lián)立得解得或,當時,,所以【小問2詳解】設(shè),,的方程為,聯(lián)立消去得,則,直線的方程為,設(shè),則,直線的方程為,設(shè),則,因為,即,所以點,關(guān)于軸對稱19、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達定理可得;(2)借助(1)中結(jié)論可得各點縱坐標之積,進而得到F、T、Q三點橫坐標關(guān)系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設(shè),因為AP與BQ均過T(t,0)點,可知,又AB過F點,所以,如圖:,,設(shè)M(n,0),由(1)類比可得.,且,成等比數(shù)列.20、(1);(2)最大值為,最小值為.【解析】(1)求導,結(jié)合導數(shù)的幾何意義列方程組,即可得解;(2)求導,確定函數(shù)的單調(diào)性和極值,再和端點值比較即可得解.【詳解】(1)由題意,,因為曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,所以,,又當時,y=f(x)有極值,所以,所以;(2)由(1)得,,所以當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減;又,,,,所以在[-3,1]上的最大值為,最小值為.21、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(3,m),代入y2=8x即可得到△OAB的周長【詳解】(1)拋物線y2=8x的頂點、焦點、準線、對稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0.(2)如圖所示.由|OA|=|OB|可知AB⊥x軸,垂足為點M,又焦點F是△OAB的重心,則|OF|=|OM|.因為F(2,0),所以|OM|=|OF|=3.所以M(3,0).故設(shè)A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周長為2+4.【點睛】本題考查了拋物線簡單性質(zhì)的應(yīng)用,解題關(guān)鍵利用好三角形重心的性質(zhì),屬于中檔題.22、(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 罕見腫瘤的個體化治療長期生存數(shù)據(jù)分析與策略優(yōu)化-3
- 2026年安慶師范大學附屬龍城幼兒園招聘1名備考題庫及完整答案詳解1套
- 罕見腫瘤的個體化治療綜合治療模式構(gòu)建與療效最大化
- 2026廣東韶關(guān)市樂昌市青年就業(yè)見習基地招募見習人員10人備考題庫(含答案詳解)
- 2026中國建筑一局(集團)有限公司華中分局投資專員招聘1人備考題庫及答案詳解(易錯題)
- 財務(wù)制度規(guī)定
- 養(yǎng)生館前臺收銀財務(wù)制度
- t3更改財務(wù)制度
- 銷售類財務(wù)制度
- 公司上墻財務(wù)制度
- 2026年公共部門人力資源管理試題含答案
- 2026年中國數(shù)聯(lián)物流備考題庫有限公司招聘備考題庫有答案詳解
- 2025年大學醫(yī)學(人體解剖學)試題及答案
- 2026年中央網(wǎng)信辦直屬事業(yè)單位-國家計算機網(wǎng)絡(luò)應(yīng)急技術(shù)處理協(xié)調(diào)中心校園招聘備考題庫參考答案詳解
- DB32/T+5311-2025+港口與道路工程+固化土施工技術(shù)規(guī)范
- 2025年河南農(nóng)業(yè)大學輔導員考試真題
- 2025鄭州餐飲行業(yè)市場深度調(diào)研及發(fā)展前景與投資前景研究報告
- 早產(chǎn)的臨床診斷與治療指南(2025年)
- 2025年黑龍江省大慶市檢察官逐級遴選筆試題目及答案
- JBP計劃培訓課件
- 寵物民宿創(chuàng)業(yè)規(guī)劃
評論
0/150
提交評論