版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省淮北市同仁中學2024屆數(shù)學高二上期末學業(yè)質量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.12.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個焦點為頂點的四邊形的面積為16,則橢圓的方程為A. B.C. D.3.已知經(jīng)過兩點(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.74.已知實數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.55.已知等比數(shù)列滿足,,則數(shù)列前6項的和()A.510 B.126C.256 D.5126.1202年,意大利數(shù)學家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個月的兔子的總對數(shù),則有(n>2),.設數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項和為()A.11 B.12C.13 D.187.拋物線的焦點到準線的距離為()A. B.C. D.8.若,則的最小值為()A.1 B.2C.3 D.49.已知直線過點且與直線平行,則直線方程為()A. B.C. D.10.已知圓,則圓C關于直線對稱的圓的方程為()A. B.C. D.11.設函數(shù),,,則()A. B.C. D.12.不等式的解集是()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.設為等差數(shù)列的前n項和,若,,則______14.已知正數(shù)滿足,則的最小值是__________.15.已知直線與圓交于,兩點,則的最小值為___________.16.與直線和直線的距離相等的直線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,底面是正方形,O是的中點,(1)證明:(2)求直線與平面所成角的正弦值18.(12分)已知等比數(shù)列的公比,且,的等差中項為5,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.(12分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當PB的長為何值時,直線AB與平面PCD所成角的正弦值為?20.(12分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.21.(12分)在等差數(shù)列中,,.(1)求的通項公式;(2)求數(shù)列的前項和.22.(10分)已知函數(shù).(1)當時,求的極值;(2)當時,,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設直線的傾斜角為,所以,因為,所以,因為直線的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C2、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點為頂點的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點:橢圓的標準方程及幾何性質;雙曲線的幾何性質.3、C【解析】根據(jù)斜率的公式直接求解即可.【詳解】由題可知,,解得.故選:C【點睛】本題主要考查了兩點間斜率的計算公式,屬于基礎題.4、D【解析】先畫出可行域,由,得,作出直線,向上平移過點A時,取得最大值,求出點A的坐標,代入可求得結果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過點A時,取得最大值,由,得,即,所以的最大值為,故選:D5、B【解析】設等比數(shù)列的公比為,由題設條件,求得,再結合等比數(shù)列的求和公式,即可求解.【詳解】設等比數(shù)列的公比為,因為,,可得,解得,所以數(shù)列前6項的和.故選:B.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的前項和公式的應用,其中解答中熟記等比數(shù)列的通項公式和求和公式,準確計算是解答的關鍵,著重考查推理與運算能力.6、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),∴前36項共有12項為偶數(shù),∴數(shù)列{an}的前36項和為12×1+24×0=12.故選:B7、B【解析】根據(jù)拋物線的幾何性質可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.8、D【解析】由基本不等式求解即可.【詳解】,當且僅當時,取等號.即所求最小值.故選:D9、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.10、B【解析】求得圓的圓心關于直線的對稱點,由此求得對稱圓的方程.【詳解】設圓的圓心關于直線的對稱點為,則,所以對稱圓的方程為.故選:B11、A【解析】根據(jù)導數(shù)得出在的單調性,進而由單調性得出大小關系.【詳解】因為,所以在上單調遞增.因為,所以,而,所以.因為,且,所以.即.故選:A12、A【解析】確定對應二次方程的解,根據(jù)三個二次的關系寫出不等式的解集【詳解】,即為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】利用等差數(shù)列前n項和的性質進行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:14、8【解析】利用“1”代換,結合基本不等式求解.【詳解】因為,,所以,當且僅當,即時等號成立,所以當時,取得最小值8.故答案為:8.15、【解析】先求出直線經(jīng)過的定點,再求出圓心到定點的距離,數(shù)形結合即得解.【詳解】由題得,所以直線經(jīng)過定點,圓的圓心為,半徑為.圓心到定點的距離為,當時,取得最小值,且最小值為.故答案為:816、【解析】設直線方程為,根據(jù)兩平行直線之間距離公式即可求解.【詳解】設該直線為:,則由兩平行直線之間距離公式得:,故該直線為:;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)以A為坐標原點,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,令,可得的坐標,再求數(shù)量積可得答案;(2)求出平面的法向量、的坐標,由線面角的向量求法可得答案.【小問1詳解】在長方體中,以A為坐標原點,的方向分別為x,y,z軸的正方向,建立如圖所示的空間直角坐標系不妨令,則,,因為,所以【小問2詳解】由(1)可知,,,設平面的法向量,則令,得,設直線與平面所成的角,則.18、(1);(2).【解析】(1)根據(jù)條件列關于首項與公比的方程組,解得結果代入等比數(shù)列通項公式即可;(2)利用錯位相減法求和即可.【詳解】解析:(1)由題意可得:,∴∵,∴,∴數(shù)列的通項公式為.(2)∴上述兩式相減可得∴【點睛】本題考查等比數(shù)列通項公式、錯位相減法求和,考查基本分析求解能力,屬中檔題.19、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質定理即可證明;(2)以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立空間直角坐標系,設,求出平面PCD的法向量的坐標,根據(jù)直線AB與平面PCD所成角的正弦值為,利用向量法可求得,從而可求解PB的長.【小問1詳解】證明:因為底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小問2詳解】解:因為底面ABCD,,所以以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立如圖所示空間直角坐標系,因為,,,所以,則,,所以,,,,設,則,,,設平面PCD的法向量為,則,令,則,,所以,所以,解得,則,所以當時,直線AB與平面PCD所成角正弦值為20、(1)甲獲得錄取的可能性大;(2)【解析】(1)利用獨立事件的乘法公式求出甲、乙兩人被錄取的概率并比較大小,即得結果.(2)應用對立事件、獨立事件的概率求法,結合互斥事件的加法公式求恰有一人獲得錄取的概率.【小問1詳解】記“甲通過筆試”為事件,“甲通過面試”為事件,“甲獲得錄取”為事件A,“乙通過筆試”為事件,“乙通過面試”為事件,“乙獲得錄取”為事件B,則,,即,所以甲獲得錄取的可能性大.【小問2詳解】記“甲乙兩人恰有一人獲得錄取”為事件C,則.21、(1)(2)【解析】(1)設的公差為,根據(jù)題意列出關于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項公式,即可求出結果.(2)對數(shù)列中項的正負情況進行討論,再結合等差數(shù)列的前項和公式,即可求出結果.【小問1詳解】解:設的公差為d,因為,,所以解得故.【小問2詳解】解:設的前項和為,則.當時,,所以所以;當時,.所以.22、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對函數(shù)求導,結合導數(shù)可求函數(shù)單調區(qū)間,即可得解;(2)構造函數(shù),將不等式的恒成立轉化為函數(shù)的最值問題,結合導數(shù)與單調性及函數(shù)的性質對進行分類討論,其中當和時易判斷函數(shù)的單調性以及最小值,而當時,的最小值與0進一步判斷【小問1詳解】當時,的定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年重慶市成都市單招職業(yè)適應性考試模擬測試卷及答案1套
- 2026年重慶電信職業(yè)學院單招職業(yè)適應性測試題庫及答案1套
- 2026年重慶科技職業(yè)學院單招職業(yè)傾向性考試題庫附答案
- 2026年長春汽車職業(yè)技術大學單招綜合素質考試模擬測試卷附答案
- 2026年長白山職業(yè)技術學院單招職業(yè)適應性測試模擬測試卷附答案
- 2026年黑龍江省哈爾濱市單招職業(yè)傾向性測試模擬測試卷附答案
- 2026年齊齊哈爾高等師范??茖W校單招職業(yè)傾向性測試模擬測試卷附答案
- 胸痛中心相關培訓課件
- 有機磷農(nóng)藥中毒的護理
- 2026年旅游產(chǎn)品網(wǎng)絡營銷技巧認證題庫
- 2025年中國道路交通毫米波雷達市場研究報告
- 設計交付:10kV及以下配網(wǎng)工程的標準與實踐
- 大學高數(shù)基礎講解課件
- hop安全培訓課件
- 固井質量監(jiān)督制度
- 中華人民共和國職業(yè)分類大典是(專業(yè)職業(yè)分類明細)
- 2025年中考英語復習必背1600課標詞匯(30天記背)
- 資產(chǎn)管理部2025年工作總結與2025年工作計劃
- 科技成果轉化技術平臺
- 下腔靜脈濾器置入術的護理查房
- 基建人員考核管理辦法
評論
0/150
提交評論