版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣西百色市普通高中2024屆高二數(shù)學第一學期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是定義在R上的可導函數(shù),若(為常數(shù)),則()A. B.C. D.2.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.43.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點”的必要不充分條件D.已知,且,則的最小值為94.下列結論正確的個數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.15.函數(shù)在其定義域內(nèi)可導,的圖象如圖所示,則導函數(shù)的圖象為A. B.C. D.6.已知F1(-5,0),F(xiàn)2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線7.若,則n的值為()A.7 B.8C.9 D.108.命題“,”的否定形式是()A., B.,C., D.,9.設函數(shù)的圖象為C,則下面結論中正確的是()A.函數(shù)的最小正周期是B.圖象C關于點對稱C.函數(shù)在區(qū)間上是增函數(shù)D.圖象C可由函數(shù)的圖象向右平移個單位得到10.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.11.設為實數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓12.為了解義務教育階段學校對雙減政策的落實程度,某市教育局從全市義務教育階段學校中隨機抽取了6所學校進行問卷調(diào)查,其中有4所小學和2所初級中學,若從這6所學校中再隨機抽取兩所學校作進一步調(diào)查,則抽取的這兩所學校中恰有一所小學的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點P()處的切線方程是,則_____14.若直線與直線平行,且原點到直線的距離為,則直線的方程為____________.15.已知點是橢圓上任意一點,則點到直線距離的最小值為______16.已知直線與圓:交于、兩點,則的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某學校高一、高二、高三的三個年級學生人數(shù)如下表,按年級分層抽樣的方法評選優(yōu)秀學生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如圖所示,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過5分的概率.18.(12分)某公交公司為了方便市民出行,科學規(guī)劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關系,經(jīng)過調(diào)查得到如下數(shù)據(jù):間隔時間x/分101112131415等候人數(shù)y/人232526292831調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當回歸方程”.(1)若選取的是中間4組數(shù)據(jù),求y關于x的線性回歸方程=x+,并判斷此方程是否是“恰當回歸方程”.(2)假設該起點站等候人數(shù)為24人,請你根據(jù)(1)中的結論預測車輛發(fā)車間隔多少時間合適?附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(xn,yn),其回歸直線=x+的斜率和截距的最小二乘估計分別為19.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分20.(12分)已知圓,直線(1)判斷直線l與圓C的位置關系;(2)過點作圓C的切線,求切線的方程21.(12分)已知橢圓C:的上頂點與橢圓的左右頂點連線的斜率之積為-.(1)求橢圓C的離心率(2)點M(,)在橢圓C上,橢圓的左頂點為D,上頂點為B,點A的坐標為(1,0),過點D的直線L與橢圓在第一象限交于點P,與直線AB交于點Q設L的斜率為k,若,求k的值.22.(10分)已知,(1)若,p且q為真命題,求實數(shù)x的取值范圍;(2)若p是q的充分條件,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)導數(shù)的定義即可求解.【詳解】.故選:C.2、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A3、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據(jù)充分不必要條件直接判斷;對于C:判斷出“”是“函數(shù)在內(nèi)有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數(shù)m的最大值為2021.故B正確;對于C:“函數(shù)在內(nèi)有零點”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C4、D【解析】根據(jù)常數(shù)函數(shù)的導數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的求導公式,可判斷③④.【詳解】由得:,故①錯誤;對于,,故,故②正確;對于,則,故③錯誤;對于,則,故④錯誤,故選:D5、D【解析】分析:根據(jù)函數(shù)單調(diào)性、極值與導數(shù)的關系即可得到結論.詳解:觀察函數(shù)圖象,從左到右單調(diào)性先單調(diào)遞增,然后單調(diào)遞減,最后單調(diào)遞增.對應的導數(shù)符號為正,負,正.,選項D的圖象正確.故選D.點睛:本題主要考查函數(shù)圖象的識別和判斷,函數(shù)單調(diào)性與導數(shù)符號的對應關系是解題關鍵.6、D【解析】由雙曲線定義結合參數(shù)a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D7、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計算作答【詳解】因為,則由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D8、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A9、B【解析】化簡函數(shù)解析式,求解最小正周期,判斷選項A,利用整體法求解函數(shù)的對稱中心和單調(diào)遞增區(qū)間,判斷選項BC,再由圖象變換法則判斷選項D.【詳解】,所以函數(shù)的最小正周期為,A錯;令,得,所以函數(shù)圖象關于點對稱,B正確;由,得,所以函數(shù)在上為增函數(shù),在上為減函數(shù),C錯;函數(shù)的圖象向右平移個單位得,D錯.故選:B10、A【解析】先聯(lián)立直線和橢圓的方程,結合中點公式及點可求a的值.【詳解】設,聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.11、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據(jù)拋物線標準方程的特征曲線C不可能是拋物線,故選項A正確;對B:當時,曲線C為雙曲線,故選項B錯誤;對C:當時,曲線C為圓,故選項C錯誤;對D:當且時,曲線C為橢圓,故選項D錯誤;故選:A.12、A【解析】由組合知識結合古典概型概率公式求解即可.【詳解】從這6所學校中隨機抽取兩所學校的情況共有種,這兩所學校中恰有一所小學的情況共有種,則其概率為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導數(shù)的幾何意義,結合切線方程,即可求解.【詳解】根據(jù)導數(shù)的幾何意義可知,,且,所以.故答案為:14、【解析】可設直線的方程為,利用點到直線的距離公式求得,即可得解.【詳解】可設直線的方程為,即,則原點到直線的距離為,解得,所以直線的方程為.故答案為:.15、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點到直線的最小值.【詳解】設與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.16、2【解析】用已知直線方程和圓方程聯(lián)立,可以求出交點,再分析三角形的形狀,即可求出三角形的面積.【詳解】由圓C方程:可得:;即圓心C的坐標為(0,-1),半徑r=2;聯(lián)立方程得交點,如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關系式計算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計算即可;(3)求出樣本平均數(shù),進而求出與樣本平均數(shù)之差的絕對值不超過5的數(shù),從而利于古典概型的概率公式計算即可.【小問1詳解】設該??側藬?shù)為n人,由題意得,所以,.【小問2詳解】設所抽樣本中有m個女生,因為用分層抽樣的方法在高一學生中抽取一個容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個,其中至少有1名女生的基本事件有,,,,,,,共7個,所以從中任取2人,至少有1名女生的概率為.【小問3詳解】樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對值不超過5的數(shù)為94,86,92,87,90,93這6個數(shù),總的個數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過5的概率為.18、(1),是“恰當回歸方程”;(2)10分鐘較合適.【解析】(1)應用最小二乘法求出回歸直線方程,再分別估計、時的值,結合“恰當回歸方程”的定義判斷是否為“恰當回歸方程”.(2)根據(jù)(1)所得回歸直線方程,將代入求x值即可.【小問1詳解】中間4組數(shù)據(jù)是:間隔時間(分鐘)11121314等候人數(shù)(人)25262928因為,所以,故,又,所以,當時,,而;當時,,而;所以所求的線性回歸方程是“恰當回歸方程”;【小問2詳解】由(1)知:當時,,所以預測車輛發(fā)車間隔時間10分鐘較合適.19、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標,結合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設直線l的的斜率為,得到,結合題意列出方程,求得的值,即可求解;若選②,設所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,設直線l的的斜率為,可得直線的方程為,即,則直線與坐標軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標為或,所以所求圓的方程為或.20、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.21、(1)(2)1【解析】(1)根據(jù)橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,由求解;(2)根據(jù)點M(,)在橢圓C上,頂點,再由,求得橢圓方程,由,結合,得到,設直線方程為,與橢圓方程聯(lián)立,求得點P的坐標,再由,求得Q的坐標,代入求解.【小問1詳解】解:設橢圓C:的上頂點為,左頂點為,右頂點為,因為橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,所以,即,又所以,解得;【小問2詳解】因為點M(,)在橢圓C上,所以,又,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年兒童電影企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年塑料回收行業(yè)跨境出海戰(zhàn)略分析研究報告
- 未來五年微型打印機企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 2025重慶市鐵路集團產(chǎn)業(yè)發(fā)展有限公司招聘160人筆試參考題庫附帶答案詳解(3卷)
- 2025年廣西石化分公司秋季高校畢業(yè)生招聘90人筆試參考題庫附帶答案詳解(3卷)
- 2025屆湖北省建設投資集團有限公司校園招聘124人筆試參考題庫附帶答案詳解(3卷)
- 2025屆中國燃氣校園招聘正式啟動筆試參考題庫附帶答案詳解(3卷)
- 2025中鋁寧夏能源集團第三批煤礦井下操作工招聘若干人筆試參考題庫附帶答案詳解(3卷)
- 甘肅省2024年甘肅省農(nóng)業(yè)科學院招聘26人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南省2024云南省昆明市石林縣人民檢察院招聘輔助人員(5人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 肉毒素除皺注射課件
- DB61-T5129-2025 陜西省房屋建筑與裝飾工程工程量計算標準
- 神奇的加密術教學設計-2025-2026學年初中數(shù)學北師大版2024八年級上冊-北師大版2024
- 光伏電站生產(chǎn)指標課件
- 轉讓專利權合同協(xié)議模板
- 公安刑偵案例分析報告模板
- 2025年輔警招聘考試試題題庫含答案詳解(完整版)
- 工業(yè)廠房建設公司簡介范文
- 兒童體適能初級基礎課程7
- 學堂在線 雨課堂 學堂云 研究生學術與職業(yè)素養(yǎng)講座 章節(jié)測試答案
- 2025年企業(yè)合規(guī)管理專業(yè)考試試題及答案
評論
0/150
提交評論