版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省新蔡縣2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2013年9月7日,總書記在哈薩克斯坦納扎爾巴耶夫大學(xué)發(fā)表演講在談到環(huán)境保護問題時提出“綠水青山就是金山銀山”這一科學(xué)論新.某市為了改善當?shù)厣鷳B(tài)環(huán)境,2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,從2021年開始每年投入資金比上一年增加10%,到2024年底該市生態(tài)環(huán)境建設(shè)投資總額大約為()(其中,,)A.2559萬元 B.2969萬元C.3005萬元 D.3040萬元2.在空間直角坐標系下,點關(guān)于平面的對稱點的坐標為()A. B.C. D.3.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.4.已知,若,是第二象限角,則=()A. B.5C. D.105.以軸為對稱軸,頂點為坐標原點,焦點到準線的距離為4的拋物線方程是()A. B.C.或 D.或6.若展開式的二項式系數(shù)之和為,則展開式的常數(shù)項為()A. B.C. D.7.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.988.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.9.,則與分別為()A.與 B.與C.與0 D.0與10.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.11.已知過點的直線與圓相切,且與直線垂直,則()A. B.C. D.12.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.14.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開始上漲了1米,則此時橋洞中水面的寬度為______米15.已知是橢圓的兩個焦點,分別是該橢圓的左頂點和上頂點,點在線段上,則的最小值為__________.16.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列和正項等比數(shù)列滿足(1)求的通項公式;(2)求數(shù)列的前n項和18.(12分)已知數(shù)列,,,且,其中為常數(shù)(1)證明:;(2)是否存在,使得為等差數(shù)列?并說明理由19.(12分)如圖,點是曲線上的動點(點在軸左側(cè)),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當為何值時,等腰梯形的面積最大?求出最大面積.20.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和.21.(12分)若函數(shù)與的圖象有一條與直線平行的公共切線,求實數(shù)a的值22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求角C;(2)若,,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】前7年投入資金可看成首項為160,公差為20的等差數(shù)列,后4年投入資金可看成首項為260,公比為1.1的等比數(shù)列,分別求和,即可求出所求【詳解】2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,成等差數(shù)列,則2020年投入資金萬元,年共7年投資總額為,從2021年開始每年投入資金比上一年增加,則從2021年到2024年投入資金成首項為,公比為1.1,項數(shù)為4的等比數(shù)列,故從2021年到2024年投入總資金為,故到2024年底該市生態(tài)環(huán)境建設(shè)投資總額大約為萬元故選:2、C【解析】根據(jù)空間坐標系中點的對稱關(guān)系求解【詳解】點關(guān)于平面的對稱點的坐標為,故選:C3、D【解析】根據(jù)點到直線的距離與點到點之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D4、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D5、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標準方程.【詳解】依題意設(shè)拋物線方程為因為焦點到準線的距離為4,所以,所以,所以拋物線方程或故選:C6、C【解析】利用二項式系數(shù)的性質(zhì)求得的值,再利用二項式展開式的通項公式,求得結(jié)果即可.【詳解】解:因為展開式的二項式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項為.故選:C.7、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設(shè),飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D8、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題9、C【解析】利用正弦函數(shù)和常數(shù)導(dǎo)數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C10、C【解析】利用導(dǎo)函數(shù)的圖象,判斷導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C11、B【解析】首先由點的坐標滿足圓的方程來確定點在圓上,然后求出過點的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因為,所以點在圓上,所以過點的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因為直線與切線垂直,所以,解得.故選:B.12、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設(shè)點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.14、【解析】以橋的頂點為坐標原點,水平方向所在直線為x軸建立直角坐標系,則根據(jù)點在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點坐標為,求出,進而可得水面的寬度.【詳解】以橋的頂點為坐標原點,水平方向所在直線為x軸建立直角坐標系,則拋物線的方程為,因為點在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點坐標為,則,得,所以此時橋洞中水面的寬度為米故答案為:15、【解析】由題可設(shè),則,然后利用數(shù)量積坐標表示及二次函數(shù)的性質(zhì)即得.【詳解】由題可得,,設(shè),因為點P在線段AB上,所以,∴,∴當時,的最小值為.故答案為:.16、【解析】先利用勾股定理得出滿足條件的長度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設(shè),當時,,;當時,,所以當?shù)降木嚯x都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)條件列公差與公比方程組,解得結(jié)果,代入等差數(shù)列通項公式即可;(2)根據(jù)等比數(shù)列求和公式直接求解.【詳解】(1)設(shè)等差數(shù)列公差為,正項等比數(shù)列公比為,因為,所以因此;(2)數(shù)列的前n項和【點睛】本題考查等差數(shù)列以及等比數(shù)列通項公式、等比數(shù)列求和公式,考查基本分析求解能力,屬基礎(chǔ)題.18、(1)證明見解析(2)存在;理由見解析【解析】(1)由得兩式相減可得答案;(2)利用得,可得,是首項為1,公差為4的等差數(shù)列,是首項為3,公差為4的等差數(shù)列,因此存在【小問1詳解】由題設(shè),,,兩式相減得,,由于,所以【小問2詳解】由題設(shè),,,可得,由(1)知,.令,解得,故,由此可得,是首項為1,公差為4的等差數(shù)列,;又,同理,是首項為3,公差為4的等差數(shù)列,所以,所以.因此存在,使得為等差數(shù)列19、(1);(2)當時取到最大值,【解析】(1)設(shè)點,則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進而得的最值,進而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點,由是曲線上的動點得:,由于橢圓與軸交點為,故,所以即:(2)結(jié)合(1),對兩邊平方得:,令,則,所以當時,,當時,,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當時,取到最大值,.【點睛】本題考查利用導(dǎo)數(shù)研究實際問題,考查數(shù)學(xué)應(yīng)用能力與計算能力,是中檔題.20、(1)(2)【解析】(1)根據(jù)與的關(guān)系,分和兩種情況,求出,再判斷是否合并;(2)利用錯位相減法求出數(shù)列的前n項和.【小問1詳解】,當時,,當時,,也滿足上式,數(shù)列的通項公式為:.【小問2詳解】由(1)可得,①②①②得,21、或3【解析】設(shè)出切點,先求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鄭州理工職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題附答案解析(必刷)
- 2025年重慶市涼山彝族自治州單招職業(yè)傾向性考試題庫帶答案解析
- 2025年銅陵學(xué)院馬克思主義基本原理概論期末考試模擬題附答案解析(必刷)
- 2025年青海民族大學(xué)馬克思主義基本原理概論期末考試模擬題附答案解析
- 2026年云南省曲靖市單招職業(yè)適應(yīng)性考試題庫附答案解析
- 2026年綿陽職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫附答案解析
- 村委會安全教育培訓(xùn)制度
- 工程人員培訓(xùn)及考核制度
- 廚房燃氣培訓(xùn)制度及流程
- 加強外出培訓(xùn)管理制度
- 單值-移動極差控制圖(自動版)
- JGT124-2017 建筑門窗五金件 傳動機構(gòu)用執(zhí)手
- 《GNSS基礎(chǔ)知識》課件
- 第7課-離子推進技術(shù)(推力器)
- 大學(xué)德語四級詞匯
- 用友PDM操作手冊
- 某項目標底及投標報價測算分析報告
- 中國抑郁癥防治指南
- 科創(chuàng)板股票投資知識測試題目
- GB 6529-1986紡織品的調(diào)濕和試驗用標準大氣
- 地基處理教材課件
評論
0/150
提交評論