版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省佳木斯市2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn),為銳角,且,則()A. B.C. D.2.拋物線上有兩個(gè)點(diǎn),焦點(diǎn),已知,則線段的中點(diǎn)到軸的距離是()A.1 B.C.2 D.3.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn)P是橢圓上的動(dòng)點(diǎn),,,則的最小值為()A. B.C D.4.,則與分別為()A.與 B.與C.與0 D.0與5.橢圓的短軸長(zhǎng)為()A.8 B.2C.4 D.6.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對(duì)稱軸旋轉(zhuǎn)形成的曲面)反射器和位于其焦點(diǎn)上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應(yīng)用于微波和衛(wèi)星通訊等,具有結(jié)構(gòu)簡(jiǎn)單、方向性強(qiáng)、工作頻帶寬等特點(diǎn).圖2是圖1的軸截面,,兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,是拋物線的焦點(diǎn),是饋源的方向角,記為.焦點(diǎn)到頂點(diǎn)的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.27.在直三棱柱中,,M,N分別是,的中點(diǎn),,則AN與BM所成角的余弦值為()A. B.C. D.8.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過(guò)樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg9.直線的傾斜角為()A. B.C. D.10.已知、分別是雙曲線的左、右焦點(diǎn),為一條漸近線上的一點(diǎn),且,則的面積為()A. B.C. D.111.?dāng)?shù)列滿足且,則的值是()A.1 B.4C.-3 D.612.若數(shù)列滿足,,則該數(shù)列的前2021項(xiàng)的乘積是()A. B.C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{}的通項(xiàng)公式為,前n項(xiàng)和為,當(dāng)取得最小值時(shí),n的值為_(kāi)__________.14.已知數(shù)列滿足,,則使得成立的n的最小值為_(kāi)_________.15.已知拋物線:,斜率為且過(guò)點(diǎn)的直線與交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn)(1)求拋物線的方程;(2)設(shè)點(diǎn),記直線,的斜率分別為,,證明:為定值16.點(diǎn)為橢圓上的一動(dòng)點(diǎn),則點(diǎn)到直線的距離的最小值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知以點(diǎn)為圓心的圓與直線相切,過(guò)點(diǎn)的動(dòng)直線l與圓A相交于M,N兩點(diǎn)(1)求圓A的方程(2)當(dāng)時(shí),求直線l方程18.(12分)已知數(shù)列的前n項(xiàng)積,數(shù)列為等差數(shù)列,且,(1)求與的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和19.(12分)設(shè)點(diǎn)P是曲線上的任意一點(diǎn),k是該曲線在點(diǎn)P處的切線的斜率(1)求k的取值范圍;(2)求當(dāng)k取最大值時(shí),該曲線在點(diǎn)P處的切線方程20.(12分)已知函數(shù)的圖象在點(diǎn)處的切線與直線平行(是自然對(duì)數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知向量,(1)求;(2)求;(3)若(),求的值22.(10分)已知拋物線的準(zhǔn)線方程是,直線與拋物線相交于M、N兩點(diǎn)(1)求拋物線的方程;(2)求弦長(zhǎng);(3)設(shè)O為坐標(biāo)原點(diǎn),證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)角終邊上有一點(diǎn),得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【詳解】因?yàn)榻墙K邊上有一點(diǎn),所以,又因?yàn)闉殇J角,且,所以,所以,故選:C2、B【解析】利用拋物線的定義,將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,即可求出線段中點(diǎn)的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點(diǎn)的橫坐標(biāo)為,故線段的中點(diǎn)到軸的距離是.故選:.3、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當(dāng)且僅當(dāng)時(shí)取等號(hào).【詳解】根據(jù)橢圓的定義可知,,即,因?yàn)?,,所以,?dāng)且僅當(dāng),時(shí)等號(hào)成立.故選:A4、C【解析】利用正弦函數(shù)和常數(shù)導(dǎo)數(shù)公式,結(jié)合代入法進(jìn)行求解即可.【詳解】因?yàn)?,所以,所以,,故選:C5、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長(zhǎng).【詳解】由,可得,所以短軸長(zhǎng)為.故選:C.6、B【解析】建立平面直角坐標(biāo)系,利用題設(shè)條件得到得點(diǎn)坐標(biāo),代入拋物線方程化簡(jiǎn)即可求解【詳解】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當(dāng)時(shí),故選:B7、D【解析】構(gòu)建空間直角坐標(biāo)系,根據(jù)已知條件求AN與BM對(duì)應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標(biāo)表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標(biāo)系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D8、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過(guò)樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤故選D9、D【解析】由直線斜率概念可寫(xiě)出傾斜角的正切值,進(jìn)而可求出傾斜角.【詳解】因?yàn)橹本€的斜率為,所以傾斜角.故選D【點(diǎn)睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.10、A【解析】先表示出漸近線方程,設(shè)出點(diǎn)坐標(biāo),利用,解出點(diǎn)坐標(biāo),再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設(shè)在上,設(shè),由得,解得,的面積為.故選:A.11、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A12、C【解析】先由數(shù)列滿足,,計(jì)算出前5項(xiàng),可得,且,再利用周期性即可得到答案.【詳解】因?yàn)閿?shù)列滿足,,所以,同理可得,…所以數(shù)列每四項(xiàng)重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項(xiàng)的乘積是.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】首先求出數(shù)列的正負(fù)項(xiàng),再判斷取得最小值時(shí)n的值.【詳解】當(dāng),,解得:,當(dāng)和時(shí),,所以取得最小值時(shí),.故答案為:714、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項(xiàng)開(kāi)始是公比為2的等比數(shù)列,進(jìn)而寫(xiě)出的通項(xiàng)公式,即可求使成立的最小值n.【詳解】因?yàn)?,所以,兩式相除得,整理?因?yàn)?,故從第二?xiàng)開(kāi)始是等比數(shù)列,且公比為2,因?yàn)椋瑒t,所以,則,由得:,故故答案為:11.15、(1)(2)為定值6【解析】(1)由題意可知:將直線方程代入拋物線方程,由韋達(dá)定理可知:,,,,求得p的值,即可求得拋物線E的方程;(2)由直線的斜率公式可知:,,,代入,,即可得到:.試題解析:(1)直線的方程為,聯(lián)立方程組得,設(shè),,所以,,又,所以,從而拋物線的方程為(2)因?yàn)?,,所以,,因此,又,,所以,即為定值點(diǎn)睛:定點(diǎn)、定值問(wèn)題通常是通過(guò)設(shè)參數(shù)或取特殊值來(lái)確定“定點(diǎn)”是什么、“定值”是多少,或者將該問(wèn)題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問(wèn)題,證明該式是恒定的.定點(diǎn)、定值問(wèn)題同證明問(wèn)題類(lèi)似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).16、【解析】設(shè)與平行的直線與相切,求解出此時(shí)的方程,則點(diǎn)到直線距離的最大值可根據(jù)平行直線間的距離公式求解出.【詳解】設(shè)與平行的直線,當(dāng)與橢圓相切時(shí)有:,所以,所以,所以,由題意取時(shí),到直線的距離較小此時(shí)與(即)的距離為,所以點(diǎn)到直線距離的最小值為,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】(1)利用圓心到直線的距離公式求圓的半徑,從而求解圓的方程;(2)根據(jù)相交弦長(zhǎng)公式,求出圓心到直線的距離,設(shè)出直線方程,再根據(jù)點(diǎn)到直線的距離公式確定直線方程【詳解】(1)由題意知到直線的距離為圓A半徑r,所以,所以圓A的方程為(2)設(shè)的中點(diǎn)為Q,則由垂徑定理可知,且,在中由勾股定理易知,設(shè)動(dòng)直線l方程為:或,顯然符合題意由到直線l距離為1知得所以或?yàn)樗笾本€方程【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程及直線與圓的相交弦長(zhǎng)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題18、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項(xiàng)公式可求得;(2)運(yùn)用錯(cuò)位相減法可求得.【小問(wèn)1詳解】解:因?yàn)閿?shù)列的前n項(xiàng)積,所以,所以,兩式相除得,因?yàn)閿?shù)列為等差數(shù)列,且,,所以,即,所以數(shù)列的公差為,所以,所以,【小問(wèn)2詳解】解:由(1)得,所以,,所以,所以.19、(1)(2)【解析】(1)先求導(dǎo)數(shù)再求最值即可求解答案;(2)由(1)確定切點(diǎn),從而也確定的斜率就可以求切線.【小問(wèn)1詳解】設(shè),因?yàn)?,所以,所以k的取值范圍為【小問(wèn)2詳解】由(1)知,此時(shí),即,所以此時(shí)曲線在點(diǎn)P處的切線方程為20、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意結(jié)合導(dǎo)數(shù)的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導(dǎo)數(shù)求出函數(shù)的最小值,即可求得實(shí)數(shù)的取值范圍【小問(wèn)1詳解】解:,因?yàn)楹瘮?shù)的圖象在點(diǎn)處的切線與直線平行,所以,解得;【小問(wèn)2詳解】解:在上恒成立,即在上恒成立,,,令,則,當(dāng)時(shí),;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,有上單調(diào)遞增,,,即實(shí)數(shù)的取值范圍是21、(1)(2)(3)【解析】(1)根據(jù)向量數(shù)量積的坐標(biāo)表示即可得解;(2)求出,再根據(jù)空間向量的模的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GA 1408-2017 警帽 禮儀大檐帽》專題研究報(bào)告
- 《GA 758-2008 9mm警用轉(zhuǎn)輪手槍》專題研究報(bào)告
- 中學(xué)社團(tuán)指導(dǎo)教師職責(zé)制度
- 養(yǎng)老院入住老人遺物保管與處理制度
- 企業(yè)內(nèi)部培訓(xùn)與發(fā)展規(guī)劃制度
- 交通管制與疏導(dǎo)方案制度
- 2026湖北省定向重慶大學(xué)選調(diào)生招錄備考題庫(kù)附答案
- 2026湖南郴州莽山旅游開(kāi)發(fā)有限責(zé)任公司面向社會(huì)招聘40人備考題庫(kù)附答案
- 2026福建泉州石獅市鳳里街道中心幼兒園春季招聘?jìng)淇碱}庫(kù)附答案
- 2026西藏自治區(qū)定向選調(diào)生招錄(70人)參考題庫(kù)附答案
- 旅居養(yǎng)老可行性方案
- 燈謎大全及答案1000個(gè)
- 老年健康與醫(yī)養(yǎng)結(jié)合服務(wù)管理
- 中國(guó)焦慮障礙防治指南
- 1到六年級(jí)古詩(shī)全部打印
- 心包積液及心包填塞
- GB/T 40222-2021智能水電廠技術(shù)導(dǎo)則
- 兩片罐生產(chǎn)工藝流程XXXX1226
- 第十章-孤獨(dú)癥及其遺傳學(xué)研究課件
- 人教版四年級(jí)上冊(cè)語(yǔ)文期末試卷(完美版)
- 工藝管道儀表流程圖PID基礎(chǔ)知識(shí)入門(mén)級(jí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論