寧夏石嘴山市一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
寧夏石嘴山市一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
寧夏石嘴山市一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
寧夏石嘴山市一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
寧夏石嘴山市一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

寧夏石嘴山市一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線l的方向向量為,且l過點,則點到l的距離為()A B.C. D.2.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.3.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.4.如圖,P是橢圓第一象限上一點,A,B,C是橢圓與坐標軸的交點,O為坐標原點,過A作AN平行于直線BP交y軸于N,直線CP交x軸于M,直線BP交x軸于E.現(xiàn)有下列三個式子:①;②;③.其中為定值的所有編號是()A.①③ B.②③C.①② D.①②③5.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.6.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.在中,角、、所對的邊分別是、、.已知,,且滿足,則的取值范圍為()A. B.C. D.8.已知數(shù)列滿足,則()A.2 B.C.1 D.9.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.10.已知空間直角坐標系中的點,,,則點P到直線AB的距離為()A. B.C. D.11.已知直線平分圓C:,則最小值為()A.3 B.C. D.12.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.14.已知雙曲線,左右焦點分別為,若過右焦點的直線與以線段為直徑的圓相切,且與雙曲線在第二象限交于點,且軸,則雙曲線的離心率是_________.15.記為等差數(shù)列的前n項和.若,則__________16.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準時發(fā)車,則他等車時間不超過5分鐘的概率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,,且對任意的,都有.(1)數(shù)列的通項公式;(2)設(shè)數(shù)列,求數(shù)列的前項和.18.(12分)已知拋物線C:,直線l經(jīng)過點,且與拋物線C交于M,N兩點,其中.(1)若,且,求點M的坐標;(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,若存在,請求出正數(shù)m,若不存在,請說明理由.19.(12分)已知圓:與直線:.(1)證明:直線過定點,并求出其坐標;(2)當時,直線l與圓C交于A,B兩點,求弦的長度.20.(12分)已知過點的圓的圓心M在直線上,且y軸被該圓截得的弦長為4(1)求圓M的標準方程;(2)設(shè)點,若點P為x軸上一動點,求的最小值,并寫出取得最小值時點P的坐標21.(12分)在平面直角坐標系中,已知圓,點P在圓上,過點P作x軸的垂線,垂足為是的中點,當P在圓M上運動時N形成的軌跡為C(1)求C的軌跡方程;(2)若點,試問在x軸上是否存在點M,使得過點M的動直線交C于兩點時,恒有?若存在,求出點M的坐標;若不存在,請說明理由22.(10分)已知,,(1)若,為真命題,為假命題,求實數(shù)x的取值范圍;(2)若是的充分不必要條件,求實數(shù)m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用向量投影和勾股定理即可計算.【詳解】∵,∴又,∴在方向上的投影,∴P到l距離故選:C.2、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B3、C【解析】根據(jù)雙曲線的定義和性質(zhì),當弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當軸時,周長最小值為故選:C4、D【解析】根據(jù)斜率的公式,可以得到的值是定值,然后結(jié)合已知逐一判斷即可.【詳解】設(shè),所以有,,因此,所以有,,,,,,故,,.故選:D【點睛】關(guān)鍵點睛:利用斜率公式得到之間的關(guān)系是解題的關(guān)鍵.5、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題6、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B7、D【解析】利用正弦定理邊角互化思想化簡得出,利用余弦定理化簡得出,結(jié)合,根據(jù)函數(shù)在上的單調(diào)性可求得的取值范圍.【詳解】且,所以,由正弦定理得,即,,,所以,,則,由余弦定理得,,則,由于雙勾函數(shù)在上單調(diào)遞增,則,即,所以,.因此,的取值范圍為.故選:D.【點睛】本題考查三角形內(nèi)角余弦值的取值范圍的求解,考查了余弦定理以及正弦定理邊角互化思想的應(yīng)用,考查計算能力,屬于中等題.8、D【解析】首先得到數(shù)列的周期,再計算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D9、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A10、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D11、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.12、C【解析】共漸近線的雙曲線方程,設(shè),把點代入方程解得參數(shù)即可.【詳解】設(shè),把點代入方程解得參數(shù),所以化簡得方程故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、,設(shè)平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.14、【解析】根據(jù)題意可得,進而可得,再根據(jù),可得再根據(jù)雙曲線的定義,即可得到,進而求出結(jié)果.【詳解】如圖所示:設(shè)切點為,所以,又軸所以,所以,由,,所以又,所以故答案為:.15、【解析】因為是等差數(shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】是等差數(shù)列,且,設(shè)等差數(shù)列的公差根據(jù)等差數(shù)列通項公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項和公式:可得:.故答案:.【點睛】本題主要考查了求等差數(shù)列的前項和,解題關(guān)鍵是掌握等差數(shù)列的前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.16、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由遞推式可得,根據(jù)等比數(shù)列的定義寫出通項公式,再由累加法求的通項公式;(2)由(1)可得,再應(yīng)用裂項相消法求前項和【小問1詳解】由可得:,又,,∴,則數(shù)列是首項為2,公比為2的等比數(shù)列,∴.∴.【小問2詳解】∵,∴∴.18、(1)或(2)存在,【解析】(1)確定點為拋物線的焦點,則根據(jù)拋物線的焦半徑公式,結(jié)合拋物線方程,求得答案;(2)假設(shè)存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,可推得,由此可設(shè)直線方程,聯(lián)立拋物線方程,利用根與系數(shù)的關(guān)系,代入到中,可得結(jié)論.【小問1詳解】依題意得為的焦點,故,解得,故,則∴點的坐標或;【小問2詳解】假設(shè)存在正數(shù),使得以為直徑的圓經(jīng)過坐標原點,∴,設(shè)直線:,,,由,得,則,,∵,,∴,解得或(舍去)所以存在正數(shù),使得以為直徑的圓經(jīng)過坐標原點.19、(1)證明見解析,(2)【解析】(1)將直線方程化為,解方程得出定點;(2)求出圓心到直線的距離,再由幾何法得出弦長.【小問1詳解】證明:因為直線,所以.令,解得,所以不論取何值,直線必過定點【小問2詳解】當時,直線為,圓心圓心到直線的距離,則20、(1)(2),【解析】(1)用待定系數(shù)法設(shè)出圓心,根據(jù)圓過點和弦長列出方程求解即可;(2)當三點共線時有最小值,求出直線MN的方程,令y=0即可.【小問1詳解】由題意可設(shè)圓心,因為y軸被圓M截得的弦長為4,所以,又,則,化簡得,解得,則圓心,半徑,所以圓M的標準方程為【小問2詳解】點關(guān)于x軸的對稱點為,則,當且僅當M,P,三點共線時等號成立,因為,則直線的方程為,即,令,得,則21、(1);(2)不存在,理由見解析.【解析】(1)設(shè),根據(jù)中點坐標公式用N的坐標表示P的坐標,將P的坐標代入圓M的方程化簡即可得N的軌跡方程;(2)假設(shè)存在,設(shè)M為(m,0),設(shè)直線l斜率為k,表示其方程,l方程和橢圓方程聯(lián)立,根據(jù)韋達定理得根與系數(shù)關(guān)系,由,得,代入根與系數(shù)的關(guān)系求k與m關(guān)系即可判斷.【小問1詳解】設(shè),因為N為的中點,,又P點在圓上,,即C軌跡方程為;【小問2詳解】不存在滿足條件的點M,理由如下:假設(shè)存在滿足條件的點M,設(shè)點M的坐標為,直線的斜率為k,則直線的方程為,由消去y并整理,得,設(shè),則由,得,即,將代入上式并化簡,得將式代入上式,有,解得,而,求得點M在橢圓外,若與橢圓無交點不滿足條件,所以不存在這樣的點M【點睛】本題關(guān)鍵是由得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論