版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省渾源縣第七中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,且所有項(xiàng)的系數(shù)和為0,則含的項(xiàng)的系數(shù)為()A.-20 B.-15C.-6 D.152.若函數(shù)的導(dǎo)函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.3.直線關(guān)于直線對(duì)稱的直線方程為()A. B.C. D.4.等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),且則的實(shí)軸長(zhǎng)為A.1 B.2C.4 D.85.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件6.邊長(zhǎng)為的正方形沿對(duì)角線折成直二面角,、分別為、的中點(diǎn),是正方形的中心,則的大小為()A. B.C. D.7.已知向量,,且,則的值是()A. B.C. D.8.過(guò)點(diǎn)且與直線平行的直線方程是()A. B.C. D.9.已知點(diǎn),,直線:與線段相交,則實(shí)數(shù)的取值范圍是()A.或 B.或C. D.10.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.11.已知橢圓的短軸長(zhǎng)為8,且一個(gè)焦點(diǎn)是圓的圓心,則該橢圓的左頂點(diǎn)為()A B.C. D.12.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則________14.已知數(shù)列的前項(xiàng)和則____________________15.寫出一個(gè)公比為3,且第三項(xiàng)小于1的等比數(shù)列______16.某古典概型的樣本空間,事件,則___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點(diǎn),為坐標(biāo)原點(diǎn),且以為直徑的圓經(jīng)過(guò)原點(diǎn),求證:原點(diǎn)到直線的距離為定值,并求出該定值18.(12分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(diǎn)(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值19.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值20.(12分)已知對(duì)于,函數(shù)有意義,關(guān)于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.21.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點(diǎn).(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.22.(10分)已知橢圓M:的離心率為,左頂點(diǎn)A到左焦點(diǎn)F的距離為1,橢圓M上一點(diǎn)B位于第一象限,點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)對(duì)稱,直線CF與橢圓M的另一交點(diǎn)為D(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)設(shè)直線AD的斜率為,直線AB的斜率為.求證:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先由只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,求出n=6;再由展開式的所有項(xiàng)的系數(shù)和為0,用賦值法求出,用通項(xiàng)公式求出的項(xiàng)的系數(shù).【詳解】∵在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,∴在的展開式有7項(xiàng),即n=6;而展開式的所有項(xiàng)的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項(xiàng)公式為:,要求含的項(xiàng),只需,解得,所以系數(shù)為.故選:C2、C【解析】根據(jù)題意,求出每個(gè)函數(shù)的導(dǎo)函數(shù),進(jìn)而判斷答案.【詳解】對(duì)A,,為奇函數(shù);對(duì)B,,為奇函數(shù);對(duì)C,,為偶函數(shù);對(duì)D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.3、C【解析】先聯(lián)立方程得,再求得直線的點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過(guò)點(diǎn),,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點(diǎn)為設(shè)直線的點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的坐標(biāo)為,所以,解得所以直線關(guān)于直線對(duì)稱的直線過(guò)點(diǎn),所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C4、B【解析】設(shè)等軸雙曲線的方程為拋物線,拋物線準(zhǔn)線方程為設(shè)等軸雙曲線與拋物線的準(zhǔn)線的兩個(gè)交點(diǎn),,則,將,代入,得等軸雙曲線的方程為的實(shí)軸長(zhǎng)為故選5、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當(dāng)時(shí),,但的符號(hào)不確定,所以充分性不成立;反之當(dāng)時(shí),也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.6、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點(diǎn),分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B7、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.8、A【解析】由題意設(shè)直線方程為,根據(jù)點(diǎn)在直線上求參數(shù)即可得方程.【詳解】由題設(shè),令直線方程為,所以,可得.所以直線方程為.故選:A.9、A【解析】由可求出直線過(guò)定點(diǎn),作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過(guò)定點(diǎn),由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實(shí)數(shù)的取值范圍是或,故選:A.10、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D11、D【解析】根據(jù)橢圓的一個(gè)焦點(diǎn)是圓的圓心,求得c,再根據(jù)橢圓的短軸長(zhǎng)為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個(gè)焦點(diǎn)是,即c=3,又橢圓的短軸長(zhǎng)為8,即b=4,所以橢圓長(zhǎng)半軸長(zhǎng)為,所以橢圓的左頂點(diǎn)為,故選:D12、D【解析】利用三線垂直建立空間直角坐標(biāo)系,將線面角轉(zhuǎn)化為直線的方向向量和平面的法向量所成的角,再利用空間向量進(jìn)行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系(如圖所示),則,,,,,設(shè)平面的一個(gè)法向量為,則,即,令,則,,所以平面的一個(gè)法向量為;設(shè)直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】將代入計(jì)算,利用和互為相反數(shù),作差可得,計(jì)算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時(shí)成立.故答案為:.14、【解析】根據(jù)數(shù)列中與的關(guān)系,即可求出通項(xiàng)公式.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,時(shí),也適合,綜上,,(),故答案為:【點(diǎn)睛】本題主要考查了數(shù)列前n項(xiàng)和與通項(xiàng)間的關(guān)系,屬于容易題.15、(答案不唯一)【解析】由條件確定該等比數(shù)列的首項(xiàng)的可能值,由此確定該數(shù)列的通項(xiàng)公式.【詳解】設(shè)數(shù)列的公比為,則,由已知可得,∴,所以,故可取,故滿足條件的等比數(shù)列的通項(xiàng)公式可能為,故答案為:(答案不唯一)16、##0.5【解析】根據(jù)定義直接計(jì)算得到答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,將題目轉(zhuǎn)化為,化簡(jiǎn)得到,代入計(jì)算得到答案.【小問(wèn)1詳解】橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為,故,,故橢圓方程為.【小問(wèn)2詳解】當(dāng)直線斜率存在時(shí),設(shè)直線方程為,,,則,即,,以為直徑的圓經(jīng)過(guò)原點(diǎn),故,即,即,化簡(jiǎn)整理得到:,原點(diǎn)到直線的距離為.當(dāng)直線斜率不存在時(shí),為等腰直角三角形,設(shè),則,解得,即直線方程為,到原點(diǎn)的距離為.綜上所述:原點(diǎn)到直線的距離為定值.【點(diǎn)睛】本題考查了橢圓方程,橢圓中的定值問(wèn)題,意在考查學(xué)生的計(jì)算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中將圓過(guò)原點(diǎn)轉(zhuǎn)化為是解題的關(guān)鍵.18、(1)證明見(jiàn)解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,分別求得兩個(gè)平面的法向量,利用向量法即可求得兩個(gè)平面夾角的余弦值.【小問(wèn)1詳解】取中點(diǎn)為,連接,如下所示:因?yàn)闉檎叫?,為中點(diǎn),故可得//;在△中,因?yàn)榉謩e為的中點(diǎn),故可得//;故可得//,則四邊形為平行四邊形,即//,又面面,故//面.【小問(wèn)2詳解】因?yàn)槊婷?,故可得,又底面為正方形,故可得,則兩兩垂直;故以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系如下所示:故可得,設(shè)平面的法向量為,又則,即,不妨取,則,則,取面的法向量為,故.設(shè)平面的夾角為,故可得,即平面MND與平面PAD的夾角的余弦值為.19、(1)證明見(jiàn)解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結(jié)論;(2)如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線與平面所成的角的正弦值是【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線面垂直的判定和線面角的求法,解題的關(guān)鍵是通過(guò)過(guò)點(diǎn)作,交直線于點(diǎn),連接,然后結(jié)合條件可證得是與平面所成的角,從而在三角形中求解即可,考查推理能力和計(jì)算能力,屬于中檔題20、(1)(2)【解析】(1)由與的真假相反,得出為真命題,將定義域問(wèn)題轉(zhuǎn)化為不等式的恒成立問(wèn)題,討論參數(shù)的取值,得出答案;(2)由必要不充分條件的定義得出,討論的取值結(jié)合包含關(guān)系得出的范圍.【詳解】解:(1)因?yàn)闉榧倜},所以為真命題,所以對(duì)恒成立.當(dāng)時(shí),不符合題意;當(dāng)時(shí),則有,則.綜上,k的取值范圍為.(2)由,得.由(1)知,當(dāng)為真命題時(shí),則令令因?yàn)閜是q的必要不充分條件,所以當(dāng)時(shí),,,解得當(dāng)時(shí),,符合題意;當(dāng)時(shí),,符合題意;所以的取值范圍是【點(diǎn)睛】本題主要考查了不等式的恒成立問(wèn)題以及根據(jù)必要不充分條件求參數(shù)范圍,屬于中檔題.21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【解析】建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo);(1)用向量的坐標(biāo)運(yùn)算證明向量共面,進(jìn)而證明點(diǎn)共面;(2)利用向量的數(shù)量積的坐標(biāo)運(yùn)算證明,即可;(3)確定平面EFGHKL的一個(gè)法向量,利用空間角度的向量計(jì)算公式求得答案.【小問(wèn)1詳解】證明:以D為原點(diǎn),分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過(guò)同一點(diǎn)E,所以E,F(xiàn),G,H,K,L共面.【小問(wèn)2詳解】證明:由(1)得,,又故,,又
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年飛行工程師職業(yè)資格認(rèn)證考試含答案
- 貨運(yùn)代理服務(wù)員誠(chéng)信道德能力考核試卷含答案
- 磁選工安全生產(chǎn)基礎(chǔ)知識(shí)考核試卷含答案
- 渣油熱加工工風(fēng)險(xiǎn)評(píng)估與管理強(qiáng)化考核試卷含答案
- 甲烷合成氣凈化工安全強(qiáng)化評(píng)優(yōu)考核試卷含答案
- 辦公耗材再制造工崗前模擬考核試卷含答案
- 硅油及乳液生產(chǎn)工操作模擬考核試卷含答案
- 耐火材料燒成工創(chuàng)新應(yīng)用評(píng)優(yōu)考核試卷含答案
- 黃酒壓濾工創(chuàng)新實(shí)踐強(qiáng)化考核試卷含答案
- 混凝土模板工班組管理考核試卷含答案
- 佛協(xié)財(cái)務(wù)管理制度
- 2026屆新高考語(yǔ)文熱點(diǎn)復(fù)習(xí):賞析散文形象
- 2025年新能源汽車實(shí)訓(xùn)基地建設(shè)方案范文
- 采暖系統(tǒng)工程監(jiān)理實(shí)施細(xì)則
- 湖北省武漢市江岸區(qū)2024-2025學(xué)年上學(xué)期元調(diào)九年級(jí)物理試題(含答案)
- 常用低壓電器-繼電器 學(xué)習(xí)課件
- QC成果提高PP-R給水管道安裝一次驗(yàn)收合格率
- 江蘇省2025年普通高中學(xué)業(yè)水平合格性考試模擬英語(yǔ)試題三(解析版)
- 中央財(cái)經(jīng)大學(xué)《微積分Ⅰ(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 停運(yùn)損失費(fèi)賠償協(xié)議書模板
- 文獻(xiàn)信息檢索與利用學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評(píng)論
0/150
提交評(píng)論