新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題5-1 平面向量中的高頻小題歸類(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題5-1 平面向量中的高頻小題歸類(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題5-1 平面向量中的高頻小題歸類(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題5-1 平面向量中的高頻小題歸類(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題5-1 平面向量中的高頻小題歸類(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩52頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題5-1平面向量中的高頻小題歸類目錄TOC\o"1-1"\h\u專題5-1平面向量中的高頻小題歸類 1 1題型一:平面向量的線性運(yùn)算 1題型二:向量數(shù)量積問(wèn)題(含最值,范圍問(wèn)題) 5題型三:向量的夾角 18題型四:向量模(含最值,范圍問(wèn)題) 22題型五:平面向量的平行與垂直問(wèn)題 29題型六:三點(diǎn)共線的等價(jià)關(guān)系 33 41一、單選題 41二、多選題 48三、填空題 50四、雙空題 52題型一:平面向量的線性運(yùn)算【典例分析】例題1.(2022·河南開封·一模(文))已知SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0邊上一點(diǎn),且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】在SKIPIF1<0中,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故選:A例題2.(2022·河南新鄉(xiāng)·一模(理))在△SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為邊SKIPIF1<0,SKIPIF1<0的中點(diǎn),且SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】根據(jù)題意可得點(diǎn)G為△SKIPIF1<0的重心,所以SKIPIF1<0.故選:A.例題3.(2022·四川資陽(yáng)·一模(理))如圖,SKIPIF1<0,SKIPIF1<0為以SKIPIF1<0的直徑的半圓的兩個(gè)三等分點(diǎn),SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0為以SKIPIF1<0的直徑的半圓的兩個(gè)三等分點(diǎn)則SKIPIF1<0//SKIPIF1<0,且SKIPIF1<0又SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn)SKIPIF1<0SKIPIF1<0故選:A.【提分秘籍】平面向量的線性運(yùn)算主要工具是向量的加,減法:向量加法法則:①三角形法則(首尾相接,首尾連):SKIPIF1<0.②平行四邊形法則(作平移,共起點(diǎn),四邊形,對(duì)角線):SKIPIF1<0向量減法法則:(共起點(diǎn),連終點(diǎn),指向被減向量)SKIPIF1<0【變式演練】1.(2022·河北容城中學(xué)模擬預(yù)測(cè))在平行四邊形SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】如圖所示,設(shè)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:B.2.(2022·吉林市教育學(xué)院模擬預(yù)測(cè)(理))如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E是SKIPIF1<0的三等分點(diǎn)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0故選:B.3.(2022·寧夏·石嘴山市第三中學(xué)模擬預(yù)測(cè)(理))在等邊SKIPIF1<0中,O為重心,D是SKIPIF1<0的中點(diǎn),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】O為SKIPIF1<0的重心,延長(zhǎng)AO交BC于E,如圖,E為BC中點(diǎn),則有SKIPIF1<0,而D是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.故選:D4.(2022·全國(guó)·模擬預(yù)測(cè)(理))在SKIPIF1<0中,D為AC的中點(diǎn),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:D題型二:向量數(shù)量積問(wèn)題(含最值,范圍問(wèn)題)【典例分析】例題1.(2022·湖南·模擬預(yù)測(cè))已知直線SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0相交于不同兩點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),若平面上一動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,且點(diǎn)SKIPIF1<0在線段SKIPIF1<0外,因?yàn)辄c(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,即SKIPIF1<0是直角三角形,所以SKIPIF1<0,由數(shù)量積的定義可得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選:C.例題2.(2022·全國(guó)·模擬預(yù)測(cè))如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為邊SKIPIF1<0上的任意一點(diǎn)(包含端點(diǎn)),SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】法一:設(shè)SKIPIF1<0,因?yàn)镺為AC的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;法二:以A為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0的方向分別為x,y軸的正方向,建立如圖所示的平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:A.例題3.(2022·江西·模擬預(yù)測(cè)(理))已知圓SKIPIF1<0的半徑為2,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0上兩個(gè)動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.[6,24] B.[4,22] C.[6,22] D.[4,24]【答案】C【詳解】取EF的中點(diǎn)M,連接CM,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)向量SKIPIF1<0與SKIPIF1<0共線同向時(shí),SKIPIF1<0取得最大值22;向量SKIPIF1<0與SKIPIF1<0共線反向時(shí),SKIPIF1<0取得最小值6,故選:C.例題4.(2022·上海松江·二模)已知正方形SKIPIF1<0的邊長(zhǎng)為4,點(diǎn)SKIPIF1<0、SKIPIF1<0分別在邊SKIPIF1<0、SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,若點(diǎn)SKIPIF1<0在正方形SKIPIF1<0的邊上,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】如圖,建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時(shí),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,知SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時(shí),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時(shí),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0.綜上可得,SKIPIF1<0,故選:C例題5.(2022·黑龍江·哈爾濱三中模擬預(yù)測(cè)(理))已知拋物線SKIPIF1<0:SKIPIF1<0,點(diǎn)SKIPIF1<0為直線SKIPIF1<0上一動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作直線SKIPIF1<0,SKIPIF1<0與拋物線SKIPIF1<0分別切于點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.0 B.1 C.-1 D.0或1【答案】A【詳解】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,得切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,又兩條切線過(guò)切點(diǎn)SKIPIF1<0,有SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0是方程SKIPIF1<0即SKIPIF1<0的兩實(shí)根,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0將SKIPIF1<0代入上式,得SKIPIF1<0.故選:A【提分秘籍】求兩個(gè)向量的數(shù)量積有三種方法:(1)利用定義(包括向量數(shù)量積幾何意義)(2)利用向量的坐標(biāo)運(yùn)算(自主建系,只要題目有可以建系的條件,可通過(guò)建系法求解);(3)利用向量三角不等式SKIPIF1<0(同號(hào)同向取等號(hào);異號(hào)反向取等號(hào))例如:SKIPIF1<0中間的連接號(hào)都是“SKIPIF1<0”,記憶口訣:同號(hào)則SKIPIF1<0,SKIPIF1<0同向不等式SKIPIF1<0取到等號(hào);在不等式SKIPIF1<0中,中間的連接號(hào)“SKIPIF1<0”和“SKIPIF1<0”,記憶口訣:異號(hào)則SKIPIF1<0,SKIPIF1<0反向不等式SKIPIF1<0取到等號(hào);【變式演練】1.(2022·四川·射洪中學(xué)模擬預(yù)測(cè)(理))在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0垂直平分線SKIPIF1<0上任一異于SKIPIF1<0的點(diǎn),則SKIPIF1<0(

)A.SKIPIF1<0 B.4 C.7 D.SKIPIF1<0【答案】C【詳解】解:因?yàn)樵赟KIPIF1<0中,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0為直角三角形,所以SKIPIF1<0因?yàn)镾KIPIF1<0為線段SKIPIF1<0垂直平分線SKIPIF1<0上任一異于SKIPIF1<0的點(diǎn),所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0故選:C2.(2022·全國(guó)·模擬預(yù)測(cè))如圖,在平行四邊形SKIPIF1<0中,SKIPIF1<0,點(diǎn)E是SKIPIF1<0的中點(diǎn),點(diǎn)F滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.9 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:A.3.(2022·北京·人大附中模擬預(yù)測(cè))窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國(guó)古老的傳統(tǒng)民間藝術(shù).圖1是一張由卷曲紋和回紋構(gòu)成的正六邊形前紙窗花.圖2中正六邊形SKIPIF1<0的邊長(zhǎng)為4,圓SKIPIF1<0的圓心為該正六邊形的中心,圓SKIPIF1<0的半徑為2,圓SKIPIF1<0的直徑SKIPIF1<0,點(diǎn)SKIPIF1<0在正六邊形的邊上運(yùn)動(dòng),則SKIPIF1<0的最小值為(

)A.5 B.6 C.7 D.8【答案】D【詳解】如下圖所示,由正六邊形的幾何性質(zhì)可知,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均為邊長(zhǎng)為SKIPIF1<0的等邊三角形,當(dāng)點(diǎn)SKIPIF1<0位于正六邊形SKIPIF1<0的頂點(diǎn)時(shí),SKIPIF1<0取最大值SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0為正六邊形各邊的中點(diǎn)時(shí),SKIPIF1<0取最小值,即SKIPIF1<0,所以,SKIPIF1<0.所以,SKIPIF1<0.SKIPIF1<0的最小值為SKIPIF1<0.故選:D.4.(2022·全國(guó)·模擬預(yù)測(cè))在SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,則SKIPIF1<0的最大值為(

)A.3 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】以A為坐標(biāo)原點(diǎn),AB所在直線為x軸建立平面直角坐標(biāo)系,如圖所示,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.連接SKIPIF1<0,設(shè)線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0.連接SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在線段SKIPIF1<0上,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:C5.(2022·四川·成都七中一模(文))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是_____________.【答案】SKIPIF1<0【詳解】解:由題知,SKIPIF1<0三點(diǎn)共圓,圓心為坐標(biāo)原點(diǎn),半徑為SKIPIF1<0,所以,SKIPIF1<0,設(shè)SKIPIF1<0,數(shù)形結(jié)合可得SKIPIF1<0在SKIPIF1<0上的投影SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,故當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0有最小值SKIPIF1<0,此時(shí)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí)SKIPIF1<0有最大值SKIPIF1<0,所以,SKIPIF1<0綜上,SKIPIF1<0的取值范圍是SKIPIF1<0,所以,SKIPIF1<0的最小值是SKIPIF1<0故答案為:SKIPIF1<06.(2022·上海崇明·一模)在邊長(zhǎng)為2的正六邊形ABCDEF中,點(diǎn)P為其內(nèi)部或邊界上一點(diǎn),則SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【詳解】正六邊形ABCDEF中,過(guò)點(diǎn)B作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0SKIPIF1<0又SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0故答案為:SKIPIF1<07.(2022·安徽·全椒縣第八中學(xué)模擬預(yù)測(cè)(理))騎自行車是一種環(huán)保又健康的運(yùn)動(dòng),如圖是某一自行車的平面結(jié)構(gòu)示意圖,已知圖中的圓SKIPIF1<0(前輪),圓SKIPIF1<0(后輪)的半徑均為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均是邊長(zhǎng)為SKIPIF1<0的等邊三角形.設(shè)點(diǎn)SKIPIF1<0為后輪上的一點(diǎn),則在騎行該自行車的過(guò)程中,SKIPIF1<0的最大值為______.【答案】SKIPIF1<0【詳解】方法一:以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0軸負(fù)半軸建立如圖所示的平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上,可設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0.方法二:SKIPIF1<0SKIPIF1<0SKIPIF1<0,則當(dāng)SKIPIF1<0與SKIPIF1<0同向,即SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0.題型三:向量的夾角【典例分析】例題1.(2022·廣西北海·一模(文))已知向量SKIPIF1<0是單位向量,向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0和SKIPIF1<0的夾角為SKIPIF1<0.故選:C例題2.(2022·云南大理·模擬預(yù)測(cè))已知向量SKIPIF1<0滿足SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0所成的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以向量SKIPIF1<0與SKIPIF1<0所成的夾角為SKIPIF1<0,故選:B.例題3.(2022·浙江·模擬預(yù)測(cè))已知平面向量SKIPIF1<0滿足:SKIPIF1<0,若對(duì)滿足條件的任意向量SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的最小值是______________.【答案】SKIPIF1<0【詳解】由題意設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0恒成立,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0時(shí)取到等號(hào);故答案為:SKIPIF1<0.【提分秘籍】求向量夾角公式:SKIPIF1<0【變式演練】1.(2022·全國(guó)·模擬預(yù)測(cè)(理))已知平面向量SKIPIF1<0與SKIPIF1<0互相垂直,模長(zhǎng)之比為2:1,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角的余弦值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】平面向量SKIPIF1<0與SKIPIF1<0互相垂直,模長(zhǎng)之比為2:1,則SKIPIF1<0且SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,將SKIPIF1<0平方得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,故選:A.2.(2022·山東德州·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0.故選:C.3.(2022·湖南·模擬預(yù)測(cè))已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0與SKIPIF1<0夾角為SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0整理可得:SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0,代入SKIPIF1<0可得SKIPIF1<0可得:SKIPIF1<0,即SKIPIF1<0整理可得:SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0取等號(hào)故SKIPIF1<0,結(jié)合SKIPIF1<0,根據(jù)余弦函數(shù)圖象可知SKIPIF1<0最大值:SKIPIF1<0故選:A.4.(2022·廣西北海·一模(理))已知向量SKIPIF1<0是單位向量,向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為_____________.【答案】SKIPIF1<0##SKIPIF1<0【詳解】解:由題意可知SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0所以,SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0的夾角為SKIPIF1<0.故答案為:SKIPIF1<0題型四:向量模(含最值,范圍問(wèn)題)【典例分析】例題1.(2022·浙江紹興·一模)已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.2 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】D【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0或SKIPIF1<0(舍)所以,SKIPIF1<0SKIPIF1<0故選:D例題2.(2022·山東·德州市教育科學(xué)研究院三模)已知平面向量SKIPIF1<0,SKIPIF1<0,且非零向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值是(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,整理得SKIPIF1<0,則點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上,則SKIPIF1<0表示SKIPIF1<0和圓上點(diǎn)SKIPIF1<0之間的距離,又SKIPIF1<0在圓SKIPIF1<0上,故SKIPIF1<0的最大值是SKIPIF1<0.故選:B.例題3.(2022·四川資陽(yáng)·一模(理))已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為______.【答案】SKIPIF1<0【詳解】由題意,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,由向量模長(zhǎng)的三角不等式,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0例題4.(2022·浙江紹興·一模)已知圓SKIPIF1<0:SKIPIF1<0,線段SKIPIF1<0在直線SKIPIF1<0:SKIPIF1<0上運(yùn)動(dòng),點(diǎn)SKIPIF1<0為線段SKIPIF1<0上任意一點(diǎn),若圓SKIPIF1<0上存在兩點(diǎn)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則線段SKIPIF1<0長(zhǎng)度的最大值是______.【答案】SKIPIF1<0【詳解】解:由題意知,圓心SKIPIF1<0,半徑SKIPIF1<0所以,圓心到直線的距離SKIPIF1<0,即直線和圓相離.從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線為切線時(shí)SKIPIF1<0最大,不妨設(shè)切線為SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,解得SKIPIF1<0.所以在直線上,當(dāng)SKIPIF1<0最大時(shí),點(diǎn)SKIPIF1<0到圓心的距離為SKIPIF1<0.所以,此時(shí)SKIPIF1<0長(zhǎng)度最大值為SKIPIF1<0.故答案為:SKIPIF1<0.例題5.(2022·江西南昌·模擬預(yù)測(cè)(文))已知SKIPIF1<0為正交基底,且SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),若SKIPIF1<0,則SKIPIF1<0的最小值為_____.【答案】SKIPIF1<0##SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0為正交基底,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0分別為SKIPIF1<0的中點(diǎn),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0【提分秘籍】求兩個(gè)向量的模方法:(1)SKIPIF1<0可通過(guò)基底法表示向量求模,也可通過(guò)建系法用坐標(biāo)表示向量求模(2)利用向量三角不等式SKIPIF1<0(同號(hào)同向取等號(hào);異號(hào)反向取等號(hào))例如:SKIPIF1<0中間的連接號(hào)都是“SKIPIF1<0”,記憶口訣:同號(hào)則SKIPIF1<0,SKIPIF1<0同向不等式SKIPIF1<0取到等號(hào);在不等式SKIPIF1<0中,中間的連接號(hào)“SKIPIF1<0”和“SKIPIF1<0”,記憶口訣:異號(hào)則SKIPIF1<0,SKIPIF1<0反向不等式SKIPIF1<0取到等號(hào);【變式演練】1.(2022·全國(guó)·大化瑤族自治縣高級(jí)中學(xué)模擬預(yù)測(cè)(文))已知點(diǎn)A?B在單位圓上,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.2 B.3 C.SKIPIF1<0 D.4【答案】A【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0,因此SKIPIF1<0.故選:A.2.(2022·河南·平頂山市第一高級(jí)中學(xué)模擬預(yù)測(cè)(文))已知A,B為圓SKIPIF1<0上的兩動(dòng)點(diǎn),SKIPIF1<0,點(diǎn)P是圓SKIPIF1<0上的一點(diǎn),則SKIPIF1<0的最小值是(

)A.2 B.4 C.6 D.8【答案】C【詳解】設(shè)M是AB的中點(diǎn),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即M在以O(shè)為圓心,1為半徑的圓上,SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.3.(2022·浙江·樂(lè)清市知臨中學(xué)模擬預(yù)測(cè))平面向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0夾角最大值時(shí)SKIPIF1<0為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)槠矫嫦蛄縎KIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.由夾角公式,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立).因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0時(shí)SKIPIF1<0最大.此時(shí)SKIPIF1<0.故選:D4.(2022·海南華僑中學(xué)模擬預(yù)測(cè))已知不共線的平面向量SKIPIF1<0兩兩所成的角相等,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.2 C.3 D.2或3【答案】D【詳解】由不共線的平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩所成的角相等,可設(shè)為θ,則SKIPIF1<0.設(shè)|SKIPIF1<0|=m.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,解得:SKIPIF1<0或3.所以|SKIPIF1<0|=2或3故選:D5.(2022·浙江·三門縣觀瀾中學(xué)模擬預(yù)測(cè))已知SKIPIF1<0為單位向量,SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0的夾角最大時(shí),SKIPIF1<0_________.【答案】SKIPIF1<0【詳解】不妨取SKIPIF1<0,設(shè)SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,此時(shí)夾角最大,SKIPIF1<0.故答案為:SKIPIF1<0題型五:平面向量的平行與垂直問(wèn)題【典例分析】例題1.(2022·黑龍江·哈爾濱三中模擬預(yù)測(cè))已知向量SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)橄蛄縎KIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,故選:SKIPIF1<0.例題2.(2022·江蘇·揚(yáng)州中學(xué)模擬預(yù)測(cè))已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.2 C.8 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.故選:A.例題3.(2022·四川省綿陽(yáng)八一中學(xué)模擬預(yù)測(cè)(理))已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0___________.【答案】2【詳解】因?yàn)镾KIPIF1<0,由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:2例題4.(2022·陜西渭南·一模(文))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0等于___________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,.故答案為:SKIPIF1<0.【提分秘籍】?jī)蓚€(gè)向量平行、垂直的坐標(biāo)表示已知非零向量SKIPIF1<0,(1)SKIPIF1<0.(2)SKIPIF1<0【變式演練】1.(2022·貴州貴陽(yáng)·模擬預(yù)測(cè)(文))已知平面向量SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題可知:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:A.2.(2022·江蘇·南京市江寧高級(jí)中學(xué)模擬預(yù)測(cè))若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意,向量SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.故選:A.3.(2022·四川綿陽(yáng)·一模(理))已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0______.【答案】2【詳解】由題意,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·廣東茂名·二模)已知向量SKIPIF1<0(t,2t),SKIPIF1<0=(﹣t,1),若(SKIPIF1<0﹣SKIPIF1<0)⊥(SKIPIF1<0+SKIPIF1<0),則t=_____.【答案】SKIPIF1<0【詳解】因?yàn)椋⊿KIPIF1<0﹣SKIPIF1<0)⊥(SKIPIF1<0+SKIPIF1<0),所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型六:三點(diǎn)共線的等價(jià)關(guān)系【典例分析】例題1.(2022·陜西·漢陰縣第二高級(jí)中學(xué)一模(理))已知SKIPIF1<0是SKIPIF1<0內(nèi)一點(diǎn),SKIPIF1<0,若SKIPIF

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論