北京順義2024屆中考數學考試模擬沖刺卷含解析_第1頁
北京順義2024屆中考數學考試模擬沖刺卷含解析_第2頁
北京順義2024屆中考數學考試模擬沖刺卷含解析_第3頁
北京順義2024屆中考數學考試模擬沖刺卷含解析_第4頁
北京順義2024屆中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京順義2024屆中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數量關系為()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=12.如圖,先鋒村準備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.3.不等式組的整數解有()A.0個 B.5個 C.6個 D.無數個4.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網的初中生約有16000人,則這部分沉迷于手機上網的初中生數量,用科學記數法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人5.(2016四川省甘孜州)如圖,在5×5的正方形網格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π6.2017年底我國高速公路已開通里程數達13.5萬公里,居世界第一,將數據135000用科學計數法表示正確的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1037.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.108.多項式ax2﹣4ax﹣12a因式分解正確的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)9.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b210.二元一次方程組的解是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.關于x的一元二次方程x2+bx+c=0的兩根為x1=1,x2=2,則x2+bx+c分解因式的結果為_____.12.如圖,某城市的電視塔AB坐落在湖邊,數學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結果保留根號).13.在中,::1:2:3,于點D,若,則______14.已知關于x的方程x2-23x-k=0有兩個相等的實數根,則k的值為__________.15.如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A,B的坐標分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.16.如圖是由兩個長方體組合而成的一個立體圖形的三視圖,根據圖中所示尺寸(單位:mm),計算出這個立體圖形的表面積.17.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC內接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.19.(5分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關系,并說明理由;(2)若∠A=30°,AB=4,求的長.20.(8分)計算:|﹣2|+8+(2017﹣π)0﹣4cos45°21.(10分)如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.22.(10分)先化簡,再求值:,其中.23.(12分)如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:△BDA∽△CED.24.(14分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】試題分析:根據作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.2、D【解題分析】

利用所給的角的余弦值求解即可.【題目詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【題目點撥】本題主要考查學生對坡度、坡角的理解及運用.3、B【解題分析】

先解每一個不等式,求出不等式組的解集,再求整數解即可.【題目詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數解有:﹣2,﹣1,0,1,2共5個,故選B.【題目點撥】本題主要考查了不等式組的解法,并會根據未知數的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據解集求出特殊值.4、A【解題分析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】用科學記數法表示16000,應記作1.6×104,故選A.【題目點撥】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、B【解題分析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉的性質.6、B【解題分析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】解:135000=1.35×105故選B.【題目點撥】此題考查科學記數法表示較大的數.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、C【解題分析】

由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【題目詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【題目點撥】本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.8、A【解題分析】試題分析:首先提取公因式a,進而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案為a(x﹣6)(x+2).點評:此題主要考查了提取公因式法以及十字相乘法分解因式,正確利用十字相乘法分解因式是解題關鍵.9、D【解題分析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D10、B【解題分析】

利用加減消元法解二元一次方程組即可得出答案【題目詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.【題目點撥】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.二、填空題(共7小題,每小題3分,滿分21分)11、(x﹣1)(x﹣2)【解題分析】

根據方程的兩根,可以將方程化為:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,對比原方程即可得到所求代數式的因式分解的結果.【題目詳解】解:已知方程的兩根為:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案為:(x﹣1)(x﹣2).【題目點撥】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常數),若方程的兩根是x1和x2,則ax2+bx+c=a(x﹣x1)(x﹣x2)12、.【解題分析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質,等腰三角形的性質,解本題的關鍵是求出∠ANB=45°.13、2.1【解題分析】

先求出△ABC是∠A等于30°的直角三角形,再根據30°角所對的直角邊等于斜邊的一半求解.【題目詳解】解:根據題意,設∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【題目點撥】本題主要考查含30度角的直角三角形的性質和三角形內角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關鍵.14、-3【解題分析】試題解析:根據題意得:△=(23)2-4×1×(-k)=0,即12+4k=0,

解得:k=-3,15、1【解題分析】

先根據勾股定理求得AC的長,從而得到C點坐標,然后根據平移的性質,將C點縱軸代入直線解析式求解即可得到答案.【題目詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標為(﹣1,1).當y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【題目點撥】本題主要考查平移的性質,解此題的關鍵在于先利用勾股定理求得相關點的坐標,然后根據平移的性質將其縱坐標代入直線函數式求解即可.16、100mm1【解題分析】

首先根據三視圖得到兩個長方體的長,寬,高,在分別表示出每個長方體的表面積,最后減去上面的長方體與下面的長方體的接觸面積即可.【題目詳解】根據三視圖可得:上面的長方體長4mm,高4mm,寬1mm,下面的長方體長8mm,寬6mm,高1mm,∴立體圖形的表面積是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案為100mm1.【題目點撥】此題主要考查了由三視圖判斷幾何體以及求幾何體的表面積,根據圖形看出長方體的長,寬,高是解題的關鍵.17、【解題分析】

連接,根據勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【題目詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【題目點撥】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2);(3);【解題分析】

(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據切線的判斷定理得到結論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設DH=x,則DE=2x,所以然后求出x即可得到DE的長.【題目詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【題目點撥】本題考查了切線的判定與性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.19、(1)見解析;(2).【解題分析】

(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據弧長公式計算即可.【題目詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【題目點撥】本題考查了全等三角形的判定與性質與弧長的計算,解題的關鍵是熟練的掌握全等三角形的判定與性質與弧長的公式.20、1.【解題分析】

直接利用零指數冪的性質以及特殊角的三角函數值和絕對值的性質分別化簡得出答案.【題目詳解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【題目點撥】此題主要考查了實數運算,正確化簡各數是解題關鍵.21、(1)見解析;(2)【解題分析】分析:(1)首先連接CO,根據CD與⊙O相切于點C,可得:∠OCD=90°;然后根據AB是圓O的直徑,可得:∠ACB=90°,據此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據△ADC∽△CDB,可得:ACCB=CDBD,據此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論