2024屆廣東省廣州市南沙一中達標名校中考考前最后一卷數(shù)學試卷含解析_第1頁
2024屆廣東省廣州市南沙一中達標名校中考考前最后一卷數(shù)學試卷含解析_第2頁
2024屆廣東省廣州市南沙一中達標名校中考考前最后一卷數(shù)學試卷含解析_第3頁
2024屆廣東省廣州市南沙一中達標名校中考考前最后一卷數(shù)學試卷含解析_第4頁
2024屆廣東省廣州市南沙一中達標名校中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣東省廣州市南沙一中達標名校中考考前最后一卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.2.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x3.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經(jīng)過的路徑長x之間的函數(shù)關(guān)系用圖象表示大致是()A. B. C. D.4.人的大腦每天能記錄大約8600萬條信息,數(shù)據(jù)8600用科學記數(shù)法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1025.計算的結(jié)果為()A.2 B.1 C.0 D.﹣16.如圖,將四根長度相等的細木條首尾相連,用釘子釘成四邊形,轉(zhuǎn)動這個四邊形,使它形狀改變,當,時,等于()A. B. C. D.7.已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學記數(shù)法表示為()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1078.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠19.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°10.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設(shè)乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.計算2x3·x2的結(jié)果是_______.12.如圖,BD是矩形ABCD的一條對角線,點E,F(xiàn)分別是BD,DC的中點.若AB=4,BC=3,則AE+EF的長為_____.13.如圖,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.14.肥皂泡的泡壁厚度大約是,用科學記數(shù)法表示為_______.15.如圖,四邊形ABCD是菱形,∠DAB=50°,對角線AC,BD相交于點O,DH⊥AB于H,連接OH,則∠DHO=_____度.16.函數(shù)y=+的自變量x的取值范圍是_____.17.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運動,當⊙P與x軸相切時,圓心P的坐標為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,直角坐標系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.19.(5分)在平面直角坐標系xOy中,一次函數(shù)的圖象與y軸交于點,與反比例函數(shù)

的圖象交于點.求反比例函數(shù)的表達式和一次函數(shù)表達式;若點C是y軸上一點,且,直接寫出點C的坐標.20.(8分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.21.(10分)計算:()﹣2﹣+(﹣2)0+|2﹣|22.(10分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)23.(12分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).24.(14分)在“弘揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調(diào)查了部分學生,結(jié)果統(tǒng)計如下:(1)根據(jù)題中信息補全條形統(tǒng)計圖.(2)所抽取的學生參加其中一項活動的眾數(shù)是.(3)學校現(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【題目詳解】解:如圖,連接AE,

∵AB是直徑,

∴∠AEB=90°,即AE⊥BC,

∵EB=EC,

∴AB=AC,

∴∠C=∠B,

∵∠BAC=50°,

∴∠C=(180°-50°)=65°,

故選:C.【題目點撥】本題考查了圓周角定理、等腰三角形的判定和性質(zhì)、線段的垂直平分線的性質(zhì)定理等知識,解題的關(guān)鍵是學會添加常用輔助線,靈活運用所學知識解決問題.2、D【解題分析】

本題主要考查二次函數(shù)的解析式【題目詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設(shè)頂點坐標為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【題目點撥】本題主要考查二次函數(shù)的頂點式,根據(jù)頂點的平移可得到二次函數(shù)平移后的解析式.3、B【解題分析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結(jié)合函數(shù)解析式,可知選項B正確.【題目點撥】考點:1.動點問題的函數(shù)圖象;2.三角形的面積.4、C【解題分析】

科學記數(shù)法就是將一個數(shù)字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【題目詳解】數(shù)據(jù)8600用科學記數(shù)法表示為8.6×103故選C.【題目點撥】用科學記數(shù)法表示一個數(shù)的方法是(1)確定a:a是只有一位整數(shù)的數(shù);(2)確定n:當原數(shù)的絕對值≥10時,n為正整數(shù),n等于原數(shù)的整數(shù)位數(shù)減1;當原數(shù)的絕對值<1時,n為負整數(shù),n的絕對值等于原數(shù)中左起第一個非零數(shù)前零的個數(shù)(含整數(shù)位數(shù)上的零).5、B【解題分析】

按照分式運算規(guī)則運算即可,注意結(jié)果的化簡.【題目詳解】解:原式=,故選擇B.【題目點撥】本題考查了分式的運算規(guī)則.6、B【解題分析】

首先連接AC,由將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,AB=1,,易得△ABC是等邊三角形,即可得到答案.【題目詳解】連接AC,

∵將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,

∴AB=BC,

∵,

∴△ABC是等邊三角形,

∴AC=AB=1.

故選:B.【題目點撥】本題考點:菱形的性質(zhì).7、B【解題分析】分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.詳解:0.000000823=8.23×10-1.故選B.點睛:本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.8、D【解題分析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.9、D【解題分析】

如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【題目點撥】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內(nèi)角互補.解決問題的關(guān)鍵是作平行線.10、B【解題分析】

根據(jù)題意設(shè)出未知數(shù),根據(jù)甲所用的時間=乙所用的時間,用時間列出分式方程即可.【題目詳解】設(shè)乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【題目點撥】找出甲所用的時間=乙所用的時間這個關(guān)系式是本題解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】試題分析:根據(jù)單項式乘以單項式,結(jié)合同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,可知2x3·x2=2x3+2=2x5.故答案為:2x512、1【解題分析】

先根據(jù)三角形中位線定理得到的長,再根據(jù)直角三角形斜邊上中線的性質(zhì),即可得到的長,進而得出計算結(jié)果.【題目詳解】解:∵點E,F(xiàn)分別是的中點,∴FE是△BCD的中位線,.又∵E是BD的中點,∴Rt△ABD中,,故答案為1.【題目點撥】本題主要考查了矩形的性質(zhì)以及三角形中位線定理的運用,解題時注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.13、3:2;【解題分析】

由AG//BC可得△AFG與△BFD相似,△AEG與△CED相似,根據(jù)相似比求解.【題目詳解】假設(shè):AF=3x,BF=5x,∵△AFG與△BFD相似∴AG=3y,BD=5y

由題意BC:CD=3:2則CD=2y

∵△AEG與△CED相似∴AE:EC=AG:DC=3:2.【題目點撥】本題考查的是相似三角形,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.14、7×10-1.【解題分析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】0.0007=7×10-1.故答案為:7×10-1.【題目點撥】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.15、1.【解題分析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點:菱形的性質(zhì).16、x≥1且x≠3【解題分析】

根據(jù)二次根式的有意義和分式有意義的條件,列出不等式求解即可.【題目詳解】根據(jù)二次根式和分式有意義的條件可得:解得:且故答案為:且【題目點撥】考查自變量的取值范圍,掌握二次根式和分式有意義的條件是解題的關(guān)鍵.17、(,1)或(﹣,1)【解題分析】

根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.將P的縱坐標代入函數(shù)解析式,求P點坐標即可【題目詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.當y=1時,x1-1=1,解得x=±當y=-1時,x1-1=-1,方程無解故P點的坐標為()或(-)【題目點撥】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)(,1).【解題分析】

(1)根據(jù)勾股定理可得AB的長,即⊙M的直徑,根據(jù)同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構(gòu)建切線AE,根據(jù)特殊的三角函數(shù)值可得∠OAB=30°,分別計算EF和AF的長,可得點E的坐標.【題目詳解】(1)∵點A(,0)與點B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點A作AE⊥AB于E,交BD的延長線于點E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點E的坐標為(,1).【題目點撥】此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識.注意準確作出輔助線是解此題的關(guān)鍵.19、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解題分析】

(1)依據(jù)一次函數(shù)的圖象與軸交于點,與反比例函數(shù)的圖象交于點,即可得到反比例函數(shù)的表達式和一次函數(shù)表達式;(2)由,可得:,即可得到,再根據(jù),可得或,即可得出點的坐標.【題目詳解】(1)∵雙曲線過,將代入,解得:.∴所求反比例函數(shù)表達式為:.∵點,點在直線上,∴,,∴,∴所求一次函數(shù)表達式為.(2)由,可得:,∴.又∵,∴或,∴,或,.【題目點撥】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)的解析式和反比例函數(shù)與一次函數(shù)的交點問題.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.20、(1)反比例函數(shù)的解析式為y=﹣;一次函數(shù)的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解題分析】

(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數(shù)的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數(shù)的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數(shù)y=﹣的圖象位于二、四象限,∴在每個象限內(nèi),y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求三角形的面積,求函數(shù)的解析式,正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.21、2【解題分析】

直接利用零指數(shù)冪的性質(zhì)以及負指數(shù)冪的性質(zhì)、絕對值的性質(zhì)、二次根式以及立方根的運算法則分別化簡得出答案.【題目詳解】解:原式=4﹣3+1+2﹣2=2.【題目點撥】本題考查實數(shù)的運算,難點也在于對原式中零指數(shù)冪、負指數(shù)冪、絕對值、二次根式以及立方根的運算化簡,關(guān)鍵要掌握這些知識點.22、-17.1【解題分析】

按照有理數(shù)混合運算的順序,先乘方后乘除最后算加減,有括號的先算括號里面的.【題目詳解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【題目點撥】此題要注意正確掌握運算順序以及符號的處理.23、(Ⅰ)點P的坐標為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).【解題分析】

(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應(yīng)邊成比例與,即可求得t的值:【題目詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論