版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市時村中學2024年高考數學全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.2.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.3.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.164.已知復數,其中,,是虛數單位,則()A. B. C. D.5.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件6.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行7.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.8.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.119.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.10.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.11.已知,則()A. B. C. D.12.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數為偶函數,則_____.14.某種產品的質量指標值服從正態(tài)分布,且.某用戶購買了件這種產品,則這件產品中質量指標值位于區(qū)間之外的產品件數為_________.15.若函數為偶函數,則.16.設α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,若的解集為.(1)求的值;(2)若正實數,,滿足,求證:.18.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)在直角坐標系中,曲線的參數方程為(為參數,為實數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.20.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數據如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據1月到8月的數據,求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數據:.21.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.22.(10分)在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為,(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設坐標,根據向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數量積運算;關鍵是利用動點坐標表示出變量,根據平面向量數量積的坐標運算可整理得軌跡方程.2、B【解析】
雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.3、C【解析】
根據正弦定理邊化角以及三角函數公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.4、D【解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.5、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.6、B【解析】
根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.7、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.8、B【解析】
根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.9、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為010、B【解析】
求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.【點睛】本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.11、C【解析】
利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數的符號.12、B【解析】
根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【點睛】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據偶函數的定義列方程,化簡求得的值.【詳解】由于為偶函數,所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據函數的奇偶性求參數,考查運算求解能力,屬于中檔題.14、【解析】
直接計算,可得結果.【詳解】由題可知:則質量指標值位于區(qū)間之外的產品件數:故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎題.15、1【解析】試題分析:由函數為偶函數函數為奇函數,.考點:函數的奇偶性.【方法點晴】本題考查導函數的奇偶性以及邏輯思維能力、等價轉化能力、運算求解能力、特殊與一般思想、數形結合思想與轉化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉化思想,將函數為偶函數轉化為函數為奇函數,然后再利用特殊與一般思想,?。?6、④【解析】
根據直線和平面,平面和平面的位置關系依次判斷每個選項得到答案.【詳解】對于①,當m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當α∥β,且m?α,n?β時,由兩平面平行的性質定理,不能得出m∥n,③錯誤;對于④,當α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點睛】本題考查了直線和平面,平面和平面的位置關系,意在考查學生的空間想象能力和推斷能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見詳解.【解析】
(1)將不等式的解集用表示出來,結合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當且僅當,,,等號成立.【點睛】本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.18、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區(qū)間上的單調性,可知函數在區(qū)間上是減函數,在區(qū)間上是增函數,由此即可求得函數在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數,在區(qū)間上是增函數,,,∴函數在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數的周期性和單調性.19、(1)(2)【解析】
(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段長最小為當點與點不重合時,設,化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程的互化、直線與圓的位置關系、列方程求動點的軌跡方程,屬于基礎題.20、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據線性回歸方程代入9月份的數據即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.21、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廢渣外運施工方案(3篇)
- 拆遷高層施工方案(3篇)
- 飛機安全員培訓課件
- 飛機原理科普
- 2026福建省水利投資開發(fā)集團有限公司招聘1人備考考試題庫及答案解析
- 2026山東臨沂市教育局部分事業(yè)單位招聘綜合類崗位工作人員3人備考考試試題及答案解析
- 2026山東事業(yè)單位統(tǒng)考煙臺市萊山區(qū)招聘4人考試參考題庫及答案解析
- 2026國家稅務總局山東省稅務局招聘事業(yè)單位工作人員考試參考試題及答案解析
- 2026山東臨沂市羅莊區(qū)部分事業(yè)單位公開招聘綜合類崗位工作人員17人考試參考試題及答案解析
- 2026江西贛州交控數智能源有限責任公司招聘加油員崗3人參考考試題庫及答案解析
- 侍酒師崗前實操操作考核試卷含答案
- 蘋果電腦macOS效率手冊
- T-CHAS 20-3-7-1-2023 醫(yī)療機構藥事管理與藥學服務 第3-7-1 部分:藥學保障服務 重點藥品管理 高警示藥品
- 2022年版 義務教育《數學》課程標準
- 供貨保障方案及應急措施
- TOC基本課程講義學員版-王仕斌
- 初中語文新課程標準與解讀課件
- 中建通風與空調施工方案
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強液壓型規(guī)范
- 高考語言運用題型之長短句變換 學案(含答案)
- 2023年婁底市建設系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
評論
0/150
提交評論