2024屆甘肅省白銀市靖遠(yuǎn)縣中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2024屆甘肅省白銀市靖遠(yuǎn)縣中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2024屆甘肅省白銀市靖遠(yuǎn)縣中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2024屆甘肅省白銀市靖遠(yuǎn)縣中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2024屆甘肅省白銀市靖遠(yuǎn)縣中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆甘肅省白銀市靖遠(yuǎn)縣中考聯(lián)考數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°2.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.3.如圖,△ABC中,AB=AC,BC=12cm,點D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點E、F分別落在邊AB、BC上,則△EBF的周長是()cm.A.7 B.11 C.13 D.164.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.4的平方根是()A.16 B.2 C.±2 D.±6.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關(guān)系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個7.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>28.如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.9.﹣的相反數(shù)是()A.8 B.﹣8 C. D.﹣10.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.11.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=312.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:_______________________.14.計算(2a)3的結(jié)果等于__.15.將一次函數(shù)的圖象平移,使其經(jīng)過點(2,3),則所得直線的函數(shù)解析式是______.16.方程的解是.17.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.18.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應(yīng)點D恰好落在線段BC上,當(dāng)△DCM為直角三角形時,折痕MN的長為__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達(dá)式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.20.(6分)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.求證:AP=BQ;在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.21.(6分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運,其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應(yīng)各裝的噸數(shù)(設(shè)裝運貨物時無任何空隙).22.(8分)已知關(guān)于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數(shù)根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.23.(8分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.24.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=1.設(shè)點A的坐標(biāo)為(4,4)則點C的坐標(biāo)為;若點D的坐標(biāo)為(4,n).①求反比例函數(shù)y=的表達(dá)式;②求經(jīng)過C,D兩點的直線所對應(yīng)的函數(shù)解析式;在(2)的條件下,設(shè)點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.25.(10分)已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當(dāng)兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設(shè)運動時間為秒,的面積為,求當(dāng)為何值時取得最大值?最大值為多少?26.(12分)今年3月12日植樹節(jié)期間,學(xué)校預(yù)購進(jìn)A,B兩種樹苗.若購進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元;若購進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元.求購進(jìn)A,B兩種樹苗的單價;若該學(xué)校準(zhǔn)備用不多于8000元的錢購進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購進(jìn)多少棵.27.(12分)如圖,四邊形AOBC是正方形,點C的坐標(biāo)是(4,0).正方形AOBC的邊長為,點A的坐標(biāo)是.將正方形AOBC繞點O順時針旋轉(zhuǎn)45°,點A,B,C旋轉(zhuǎn)后的對應(yīng)點為A′,B′,C′,求點A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當(dāng)它們相遇時同時停止運動,當(dāng)△OPQ為等腰三角形時,求出t的值(直接寫出結(jié)果即可).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對頂角的性質(zhì)得出答案.【題目詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【題目點撥】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關(guān)鍵.2、D【解題分析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【題目詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【題目點撥】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).3、C【解題分析】

直接利用平移的性質(zhì)得出EF=DC=4cm,進(jìn)而得出BE=EF=4cm,進(jìn)而求出答案.【題目詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長為:4+4+5=13(cm).故選C.【題目點撥】此題主要考查了平移的性質(zhì),根據(jù)題意得出BE的長是解題關(guān)鍵.4、B【解題分析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.5、C【解題分析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.6、D【解題分析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【題目詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【題目點撥】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.7、A【解題分析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【題目詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【題目點撥】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.8、B【解題分析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,如圖,∵⊙P的圓心坐標(biāo)是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標(biāo)為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數(shù)圖象上點的坐標(biāo)特征;3.勾股定理.9、C【解題分析】互為相反數(shù)的兩個數(shù)是指只有符號不同的兩個數(shù),所以的相反數(shù)是,故選C.10、B【解題分析】

先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【題目詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【題目點撥】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.11、B【解題分析】解:去分母得:2x=x﹣3,解得:x=﹣3,經(jīng)檢驗x=﹣3是分式方程的解.故選B.12、A【解題分析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

先提公因式,再用平方差公式分解.【題目詳解】解:【題目點撥】本題考查因式分解,掌握因式分解方法是關(guān)鍵.14、8【解題分析】試題分析:根據(jù)冪的乘方與積的乘方運算法則進(jìn)行計算即可考點:(1)、冪的乘方;(2)、積的乘方15、【解題分析】試題分析:解:設(shè)y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.16、x=1.【解題分析】

根據(jù)解分式方程的步驟解答即可.【題目詳解】去分母得:2x=3x﹣1,解得:x=1,經(jīng)檢驗x=1是分式方程的解,故答案為x=1.【題目點撥】本題主要考查了解分式方程的步驟,牢牢掌握其步驟就解答此類問題的關(guān)鍵.17、22.5°【解題分析】

四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).18、或【解題分析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進(jìn)行討論:當(dāng)∠CDM=90°時,△CDM是直角三角形;當(dāng)∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當(dāng)∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當(dāng)∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解題分析】試題分析:(1)由點A與點B關(guān)于y軸對稱,可得AO=BO,再由A的坐標(biāo)求得B點的坐標(biāo),從而求得點P的坐標(biāo),將P坐標(biāo)代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標(biāo)代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8試題解析:(1)∵點A與點B關(guān)于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數(shù)的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數(shù)的解析式:y=24x(2)∵點A與點B關(guān)于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8x的圖象于點分別連結(jié)PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.20、(1)證明見解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解題分析】試題分析:(1)利用AAS證明△AQB≌△DPA,可得AP=BQ;(2)根據(jù)AQ﹣AP=PQ和全等三角形的對應(yīng)邊相等可寫出4對線段.試題解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于點Q,DP⊥AQ于點P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考點:(1)正方形;(2)全等三角形的判定與性質(zhì).21、這艘船裝甲貨物80噸,裝乙貨物180噸.【解題分析】

根據(jù)題意先列二元一次方程,再解方程即可.【題目詳解】解:設(shè)這艘船裝甲貨物x噸,裝乙貨物y噸,根據(jù)題意,得.解得.答:這艘船裝甲貨物80噸,裝乙貨物180噸.【題目點撥】此題重點考查學(xué)生對二元一次方程的應(yīng)用能力,熟練掌握二元一次方程的解法是解題的關(guān)鍵.22、方程的根【解題分析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【題目詳解】(1)∵關(guān)于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數(shù)根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當(dāng)k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當(dāng)k=0時,方程的根為0和﹣1.【題目點撥】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關(guān)鍵是:(1)牢記“當(dāng)△>0時,方程有兩個不相等的實數(shù)根”;(1)取k=0,再利用分解因式法解方程.23、(1)作圖見解析(2)為等腰三角形【解題分析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓??;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進(jìn)而判斷是否為等腰三角形.【題目詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【題目點撥】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關(guān)鍵所在.24、(1)C(2,2);(2)①反比例函數(shù)解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解題分析】

(1)利用中點坐標(biāo)公式即可得出結(jié)論;

(2)①先確定出點A坐標(biāo),進(jìn)而得出點C坐標(biāo),將點C,D坐標(biāo)代入反比例函數(shù)中即可得出結(jié)論;

②由n=1,求出點C,D坐標(biāo),利用待定系數(shù)法即可得出結(jié)論;

(1)設(shè)出點E坐標(biāo),進(jìn)而表示出點F坐標(biāo),即可建立面積與m的函數(shù)關(guān)系式即可得出結(jié)論.【題目詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵點C是OA的中點,∴C(2,),∵點C,D(4,n)在雙曲線上,∴,∴,∴反比例函數(shù)解析式為;②由①知,n=1,∴C(2,2),D(4,1),設(shè)直線CD的解析式為y=ax+b,∴,∴,∴直線CD的解析式為y=﹣x+1;(1)如圖,由(2)知,直線CD的解析式為y=﹣x+1,設(shè)點E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y軸交雙曲線于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1時,S△OEF最大,最大值為【題目點撥】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,線段的中點坐標(biāo)公式,解本題的關(guān)鍵是建立S△OEF與m的函數(shù)關(guān)系式.25、(1)1;(2);(3)x時,y有最大值,最大值.【解題分析】

(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當(dāng)0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當(dāng)x≤4時,M在BC上運動,N在OB上運動.③當(dāng)4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【題目詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當(dāng)0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當(dāng)x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當(dāng)x時,y取最大值,y,③當(dāng)4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論