版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省新余市2023年高一數學第一學期期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.下列函數中與是同一函數的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)2.將函數的圖象向左平移個單位長度,再向上平移1個單位長度,得到的圖象,若,且,則的最大值為A. B.C. D.3.若函數的圖象與軸有交點,且值域,則的取值范圍是()A. B.C. D.4.已知直線l經過兩點,則直線l的斜率是()A. B.C.3 D.5.中國傳統(tǒng)文化中很多內容體現(xiàn)了數學的“對稱美”.如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠將圓(為坐標原點)的周長和面積同時平分的函數稱為這個圓的“優(yōu)美函數”.給出下列命題:①對于任意一個圓,其“優(yōu)美函數”有無數個;②函數可以是某個圓的“優(yōu)美函數”;③正弦函數可以同時是無數個圓的“優(yōu)美函數”;④函數是“優(yōu)美函數”的充要條件為函數的圖象是中心對稱圖形A.①④ B.①③④C.②③ D.①③6.下列命題中正確的是A. B.C. D.7.圓過點的切線方程是()A. B.C. D.8.已知函數,的最值情況為()A.有最大值,但無最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.無最大值,也無最小值9.已知函數在上存在零點,則的取值范圍為()A. B.C. D.10.如圖,是全集,是子集,則陰影部分表示的集合是()A. B.C. D.11.命題p:,的否定是()A., B.,C., D.,12.某幾何體的三視圖如圖所示,則該幾何體的體積是A. B.8C.20 D.24二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知點,點P是圓上任意一點,則面積的最大值是______.14.對于函數和,設,,若存在、,使得,則稱與互為“零點關聯(lián)函數”.若函數與互為“零點關聯(lián)函數”,則實數的取值范圍為()A. B. C. D.15.半徑為2cm,圓心角為的扇形面積為.16.已知球O的內接圓柱的軸截面是邊長為2的正方形,則球O的表面積為________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數定義域是,.(1)求函數的定義域;(2)若函數,求函數的最小值18.設集合,.(1)若,求;(2)若,求實數的取值集合.19.已知,.(1)求的值;(2)求的值;(3)求的值.20.某同學用“五點法”畫函數在某一個周期內的圖象時,列表并填入了部分數據,如下表:(1)請將上表數據補充完整;函數的解析式為(直接寫出結果即可);(2)根據表格中的數據作出一個周期的圖象;(3)求函數在區(qū)間上最大值和最小值21.已知,且向量在向量的方向上的投影為,求:(1)與的夾角;(2).22.已知函數.(1)求函數的最大值及相應的取值;(2)方程在上有且只有一個解,求實數的取值范圍;(3)是否存在實數滿足對任意,都存在,使成立.若存在,求的取值范圍;若不存在,說明理由.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】將5個函數的解析式化簡后,根據相等函數的判定方法分析,即可得出結果.【詳解】(1)與定義域相同,對應關系不同,不是同一函數;(2)與的定義域相同,對應關系一致,是同一函數;(3)與定義與相同,對應關系不同,不是同一函數;(4)與定義相同,對應關系一致,是同一函數;(5)與對應關系不同,不是同一函數;故選:C.2、A【解析】分析:利用三角函數的圖象變換,可得,由可得,取,取即可得結果.詳解:的圖象向左平移個單位長度,再向上平移1個單位長度,得到,,且,,,因為,所以時,取為最小值;時,取為最大值最大值為,故選A.點睛:本題主要考查三角函數圖象的變換以及三角函數的性質,屬于中檔題.能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.3、D【解析】由函數有零點,可求得,由函數的值域可求得,綜合二者即可得到的取值范圍.【詳解】定義在上的函數,則,由函數有零點,所以,解得;由函數的值域,所以,解得;綜上,的取值范圍是故選:D4、B【解析】直接由斜率公式計算可得.【詳解】由題意可得直線l的斜率.故選:B.5、D【解析】根據定義分析,優(yōu)美函數具備的特征是,函數關于圓心(即坐標原點)呈中心對稱.【詳解】對①,中心對稱圖形有無數個,①正確對②,函數是偶函數,不關于原點成中心對稱.②錯誤對③,正弦函數關于原點成中心對稱圖形,③正確.對④,充要條件應該是關于原點成中心對稱圖形,④錯誤故選D【點睛】仔細閱讀新定義問題,理解定義中優(yōu)美函數的含義,找到中心對稱圖形,即可判斷各項正誤.6、D【解析】本題考查向量基本運算對于A,,故A不正確;對于B,由于向量的加減運算的結果仍為向量,所以,故B錯誤;由于向量的數量積結果是一個實數,故C錯誤,C的結果應等于0;D正確7、D【解析】先求圓心與切點連線的斜率,再利用切線與連線垂直求得切線的斜率結合點斜式即可求方程.【詳解】由題意知,圓:,圓心在圓上,,所以切線的斜率為,所以在點處的切線方程為,即.故選:D.8、C【解析】利用二次函數的圖象與性質,得到二次函數的單調性,即可求解最值,得到答案.【詳解】由題意,函數,可得函數在區(qū)間上單調遞增,所以當時,函數取得最小值,最小值為,當時,函數取得最小值,最小值為,故選C.【點睛】本題主要考查了二次函數的性質及其應用,其中解答中熟練利用二次函數的性質求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.9、A【解析】根據零點存在定理及函數單調性可知,,解不等式組即可求得的取值范圍.【詳解】因為在上單調遞增,根據零點存在定理可得,解得.故選:A【點睛】本題考查了函數單調性的判斷,零點存在定理的應用,根據零點所在區(qū)間求參數的取值范圍,屬于基礎題.10、C【解析】利用陰影部分所屬的集合寫出陰影部分所表示的集合【詳解】解:由圖知,陰影部分在集合中,在集合中,但不在集合中,故陰影部分所表示的集合是.故選:C.11、C【解析】根據特稱命題的否定是全稱命題即可求解.【詳解】解:命題p:,的否定是:,,故選:C.12、C【解析】由三視圖可知,該幾何體為長方體上方放了一個直三棱柱,其體積為:.故選C點睛:三視圖問題的常見類型及解題策略(1)由幾何體的直觀圖求三視圖.注意正視圖、側視圖和俯視圖的觀察方向,注意看到的部分用實線表示,不能看到的部分用虛線表示(2)由幾何體的部分視圖畫出剩余的部分視圖.先根據已知的一部分三視圖,還原、推測直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當然作為選擇題(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺、球的三視圖,明確三視圖的形成原理,結合空間想象將三視圖還原為實物圖二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由點可得直線AB的方程及的值,可得圓心到直線AB的距離d及P到直線AB的最大距離,可得面積的最大值是.【詳解】解:直線AB的方程為,圓心到直線AB的距離,點P到直線AB的最大距離為.故面積的最大值是.【點睛】本題主要考查直線與圓的位置關系,點到直線的距離公式及兩點間距離公式等,需綜合運用所學知識求解.14、C【解析】先求得函數的零點為,進而可得的零點滿足,由二次函數的圖象與性質即可得解.【詳解】由題意,函數單調遞增,且,所以函數的零點為,設的零點為,則,則,由于必過點,故要使其零點在區(qū)間上,則或,即或,所以,故選:C.【點睛】關鍵點點睛:解決本題的關鍵是將題目條件轉化為函數零點的范圍,再由二次函數的圖象與性質即可得解.15、【解析】求出扇形的弧長,利用扇形面積公式求解即可.【詳解】因為半徑為,圓心角為的扇形,弧長為,所以扇形面積為:故答案為.【點睛】本題考查扇形的面積公式的應用,考查計算能力,屬于基礎題.16、【解析】根據內接圓柱的軸截面是邊長為2的正方形,確定球O的半徑,再由球的表面積公式即得?!驹斀狻坑深}得,圓柱底面直徑為2,球的半徑為R,球O的內接圓柱的軸截面是邊長為2的正方形,則圓柱的軸截面的對角線即為球的直徑,故,則球的表面積.故答案為:【點睛】本題考查空間幾何體,球的表面積,是常見的考題。三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)【解析】(1)由定義域,求得的定義域即為所求;(2)求函數的值域,再代入求最值【詳解】(1)的定義域是,即的定義域是,所以的定義域為;(2),令,,,即,所以,當時取到【點睛】求函數值域要先準確求出函數的定義域,注意函數解析式有意義的條件,及題目對自變量的限制條件,復合函數相關問題要注意整體代換思想18、(1);(2).【解析】易得.(1)由;(2),然后利用分類討論思想對、和分三種情況進行討論.試題解析:集合(1)若,則,則(2),∴,當,即時,成立;當,即時,(i)當時,,要使得,,只要解得,所以的值不存在;(ii)當時,,要使得,只要解得綜上,的取值集合是考點:集合的基本運算.19、(1);(2);(3).【解析】(1)利用二倍角的正切公式求解即可;(2)將分子分母同除得到,代值求解即可;(3)先求得,再用兩角差的正弦公式求解即可.【詳解】(1)(2)(3)20、(1)見解析;(2)詳見解析;(3)當時,;當時,【解析】(1)由表中數據可以得到的值與函數周期,從而求出,進而求出,即可得到函數的解析式,利用函數解析式可將表中數據補充完整;(2)結合三角函數性質與表格中的數據可以作出一個周期的圖象;(3)結合正弦函數單調性,可以求出函數的最值【詳解】(1)根據表中已知數據,解得,,,數據補全如下表:函數表達式為.(2)根據表格中的數據作出一個周期的圖象見下圖:(3)令,,則,則,,可轉化為,,因為正弦函數在區(qū)間上單調遞減,在區(qū)間(上單調遞增,所以,在區(qū)間上單調遞減,在區(qū)間(上單調遞增,故的最小值為,最大值為,由于時,;時,,故當時,;當時,.【點睛】本題考查了三角函數的圖象與性質,屬于中檔題21、(1);(2)【解析】(1)由題知,進而得出,即可求得.(2)根據數量積的定義即可得出答案.【詳解】解:(1)由題意,,所以.又因為,所以.(2).【點睛】本題考查了向量的夾角、向量的數量積,考查學生對公式的熟練程度,屬于基礎題.22、(1)2,(2)或(3)存在,【解析】(1)由三角恒等變換化簡函數,再根據正弦函數性質可求得答案;(2)將問題轉化為函數與函數在上只有一個交點.由函數的單調性和最值可求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年山東工程職業(yè)技術大學單招職業(yè)傾向性考試題庫及答案1套
- 2026年檢察保密知識測試題及參考答案
- 2026年心理咨詢師輔導習題帶答案
- 2026年湖南省婁底地區(qū)單招職業(yè)適應性考試題庫及答案1套
- 2026年電工上崗考試試題及答案(必刷)
- 2026貴州貴陽觀山湖人力資源服務有限公司人員招聘3人筆試模擬試題及答案解析
- 2026年心理有關知識測試題及完整答案1套
- 2025河南南陽市唐河縣屬國有企業(yè)招聘現(xiàn)場審核(第3號)筆試參考題庫及答案解析
- 2026中國中煤陜西公司煤化工二期項目招聘54人筆試備考試題及答案解析
- 2025浙江紹興市職業(yè)教育中心(紹興技師學院)第一學期第六次編外用工招聘1人筆試參考題庫及答案解析
- 2026長治日報社工作人員招聘勞務派遣人員5人備考題庫及答案1套
- 河道清淤作業(yè)安全組織施工方案
- 2026年1月1日起施行的《兵役登記工作規(guī)定》學習與解讀
- GB/T 46831-2025塑料聚丙烯(PP)等規(guī)指數的測定低分辨率核磁共振波譜法
- 2021海灣消防 GST-LD-8318 緊急啟停按鈕使用說明書
- 2025年國家開放大學《公共經濟學》期末考試備考試題及答案解析
- 2025年河北省職業(yè)院校技能大賽高職組(商務數據分析賽項)參考試題庫(含答案)
- GB/T 33725-2017表殼體及其附件耐磨損、劃傷和沖擊試驗
- FZ/T 01057.1-2007紡織纖維鑒別試驗方法 第1部分:通用說明
- 實習協(xié)議模板(最新版)
- 不同GMP法規(guī)間的區(qū)別
評論
0/150
提交評論