版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴州省都勻市第六中學市級名校中考押題數(shù)學預測卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算的值為()A. B.-4 C. D.-22.若分式有意義,則a的取值范圍是()A.a(chǎn)≠1 B.a(chǎn)≠0 C.a(chǎn)≠1且a≠0 D.一切實數(shù)3.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結(jié)論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個4.在數(shù)軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④5.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π6.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°7.sin60°的值為()A. B. C. D.8.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣39.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=010.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,某數(shù)學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.12.不等式組x-2>0①2x-6>2②13.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.14.某中學數(shù)學教研組有25名教師,將他們分成三組,在38~45(歲)組內(nèi)有8名教師,那么這個小組的頻率是_______。15.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.16.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應點C'的坐標為_____.17.如圖,AB為⊙O的直徑,弦CD⊥AB于點E,已知CD=6,EB=1,則⊙O的半徑為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.(1)求證:△PFA∽△ABE;(2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件:.19.(5分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當△ABO是任意三角形時,設∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.20.(8分)關于x的一元二次方程ax2+bx+1=1.當b=a+2時,利用根的判別式判斷方程根的情況;若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.21.(10分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷222.(10分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點坐標和對稱軸.23.(12分)如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點F,∠ABC的平分線交AD于點E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長24.(14分)某公司為了擴大經(jīng)營,決定購進6臺機器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預算,本次購買機器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產(chǎn)量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進的6臺機器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
根據(jù)二次根式的運算法則即可求出答案.【題目詳解】原式=-3=-2,故選C.【題目點撥】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.2、A【解題分析】分析:根據(jù)分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關鍵.3、B【解題分析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉(zhuǎn)化為函數(shù)圖象交點問題,利用拋物線頂點證明.【題目詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經(jīng)過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數(shù)根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【題目點撥】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關系、拋物線對稱性和最值,以及用函數(shù)的觀點解決方程或不等式.4、C【解題分析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數(shù)與數(shù)軸的關系5、B【解題分析】
由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【題目詳解】連接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
則∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【題目點撥】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.6、C【解題分析】
首先求得AB與正東方向的夾角的度數(shù),即可求解.【題目詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【題目點撥】本題考查了方向角,正確理解方向角的定義是關鍵.7、B【解題分析】解:sin60°=.故選B.8、D【解題分析】解:∵-1<-1<0<2,∴最小的是-1.故選D.9、D【解題分析】試題解析:含有兩個未知數(shù),不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,整式方程.10、A【解題分析】
由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【題目詳解】解:大正方形的面積-小正方形的面積=,
矩形的面積=,
故,
故選:A.【題目點撥】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、25【解題分析】試題解析:由題意12、x>4【解題分析】
分別解出不等式組中的每一個不等式,然后根據(jù)同大取大得出不等式組的解集.【題目詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【題目點撥】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.13、1°【解題分析】
根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計算即可.【題目詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.【題目點撥】本題考查的是全等三角形的性質(zhì)和三角形內(nèi)角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.14、0.1【解題分析】
根據(jù)頻率的求法:頻率=,即可求解.【題目詳解】解:根據(jù)題意,38-45歲組內(nèi)的教師有8名,
即頻數(shù)為8,而總數(shù)為25;
故這個小組的頻率是為=0.1;
故答案為0.1.【題目點撥】本題考查頻率、頻數(shù)的關系,屬于基礎題,關鍵是掌握頻率的求法:頻率=.15、2.【解題分析】
由tan∠CBD==設CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【題目詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【題目點撥】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),勾股定理的應用,解題關鍵是熟記性質(zhì)與定理并準確識圖.16、(2,)【解題分析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).17、1【解題分析】
解:連接OC,∵AB為⊙O的直徑,AB⊥CD,∴CE=DE=CD=×6=3,設⊙O的半徑為xcm,則OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半徑為1,故答案為1.【題目點撥】本題利用了垂徑定理和勾股定理求解,熟練掌握并應用定理是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)3或.(3)或0<【解題分析】
(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個角對應相等,從而證明三角形相似;
(2)由于對應關系不確定,所以應針對不同的對應關系分情況考慮:當時,則得到四邊形為矩形,從而求得的值;當時,再結(jié)合(1)中的結(jié)論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點,運用勾股定理和相似三角形的性質(zhì)進行求解.
(3)此題首先應針對點的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點,不一定必須相切,只要保證和線段只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段外的情況即是的取值范圍.【題目詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點F為AE的中點,即∴滿足條件的x的值為3或(3)或【題目點撥】兩組角對應相等,兩三角形相似.19、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解題分析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【題目詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【題目點撥】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關鍵.20、(2)方程有兩個不相等的實數(shù)根;(2)b=-2,a=2時,x2=x2=﹣2.【解題分析】
分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數(shù)根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數(shù)根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.21、【解題分析】
按照實數(shù)的運算順序進行運算即可.【題目詳解】解:原式【題目點撥】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個知識點是解題的關鍵.22、開口方向:向上;點坐標:(-1,-3);稱軸:直線.【解題分析】
將二次函數(shù)一般式化為頂點式,再根據(jù)a的值即可確定該函數(shù)圖像的開口方向、頂點坐標和對稱軸.【題目詳解】解:,,,∴開口方向:向上,頂點坐標:(-1,-3),對稱軸:直線.【題目點撥】熟練掌握將一般式化為頂點式是解題關鍵.23、(1)見解析;(2)2(3)1【解題分析】
(1)通過證明∠BED=∠DBE得到DB=DE;
(2)連接CD,如圖,證明△DBC為等腰直角三角形得到BC=BD=4,從而得到△ABC外接圓的半徑;
(3)證明△DBF∽△ADB,然后利用相似比求AD的長.【題目詳解】(1)證明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:連接CD,如圖,∵∠BAC=10°,∴BC為直徑,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC為等腰直角三角形,∴BC=BD=4,∴△ABC外接圓的半徑為2;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆喀什地區(qū)2025-2026學年九年級上學期期末考試物理試卷(含答案)
- 廣東省揭陽市惠來縣2025-2026學年八年級數(shù)學上學期期末考試(含答案)
- 甘肅省定西市臨洮縣2025-2026學年下學期九年級化學一模練習試卷(含答案)
- 物化考試題及答案
- 蚊蟲危害題目及答案
- 網(wǎng)上答題題目及答案
- 辦事處行政專員崗位職責
- 部編版一年級數(shù)學上冊期末試卷及答案(真題)
- 山西省忻州市忻府區(qū)播明聯(lián)合學校2022年高二語文測試題含解析
- 2026年培訓師專業(yè)技能提升
- 消防工程施工資料管理與規(guī)范
- 《2025年CSCO非小細胞癌診療指南》解讀
- 在線網(wǎng)課學習課堂《人工智能(北理 )》單元測試考核答案
- 摩托車新車寄售協(xié)議書范文范本
- DL∕T 1724-2017 電能質(zhì)量評估技術導則 電壓波動和閃變
- 民警職級晉升工作總結(jié)范文三篇
- 銀齡計劃教師總結(jié)
- (高清版)DZT 0351-2020 野外地質(zhì)工作后勤保障要求
- 港珠澳大橋工程管理創(chuàng)新與實踐
- 化妝培訓行業(yè)分析
- 孩子如何正確與師長相處與溝通
評論
0/150
提交評論