2024屆湖南株洲市景炎校中考數(shù)學仿真試卷含解析_第1頁
2024屆湖南株洲市景炎校中考數(shù)學仿真試卷含解析_第2頁
2024屆湖南株洲市景炎校中考數(shù)學仿真試卷含解析_第3頁
2024屆湖南株洲市景炎校中考數(shù)學仿真試卷含解析_第4頁
2024屆湖南株洲市景炎校中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024學年湖南株洲市景炎校中考數(shù)學仿真試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某校40名學生參加科普知識競賽(競賽分數(shù)都是整數(shù)),競賽成績的頻數(shù)分布直方圖如圖所示,成績的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分2.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.93.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.4.下列各式計算正確的是()A.a(chǎn)2+2a3=3a5 B.a(chǎn)?a2=a3 C.a(chǎn)6÷a2=a3 D.(a2)3=a55.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽6.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.7.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1028.某商場試銷一種新款襯衫,一周內(nèi)售出型號記錄情況如表所示:型號(厘米)383940414243數(shù)量(件)25303650288商場經(jīng)理要了解哪種型號最暢銷,則上述數(shù)據(jù)的統(tǒng)計量中,對商場經(jīng)理來說最有意義的是()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差9.已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學記數(shù)法表示為()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×10710.-5的倒數(shù)是A. B.5 C.- D.-5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.12.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.13.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.14.對于函數(shù),若x>2,則y______3(填“>”或“<”).15.等腰梯形是__________對稱圖形.16.函數(shù)中自變量的取值范圍是______________三、解答題(共8題,共72分)17.(8分)在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒?,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):摸球的次數(shù)n10020030050080010003000摸到白球的次數(shù)m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?18.(8分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.19.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.20.(8分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應(yīng)點為如果,求點Q的坐標.21.(8分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?22.(10分)(1)解方程:x2x-3+5(2)解不等式組并把解集表示在數(shù)軸上:3x-1223.(12分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經(jīng)調(diào)查,用1600元采購A型商品的件數(shù)是用1000元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設(shè)其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該客商獲得最大利潤的進貨方案.24.如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結(jié)果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),所以中位數(shù)落在70.5~80.5分.故選C.點睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關(guān)鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).2、B【解題分析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【題目詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【題目點撥】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關(guān)鍵.3、D【解題分析】

如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.4、B【解題分析】

根據(jù)冪的乘方,底數(shù)不變指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,對各選項分析判斷利用排除法求解【題目詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【題目點撥】此題考查同底數(shù)冪的乘法,冪的乘方與積的乘方,解題的關(guān)鍵在于掌握運算法則.5、D【解題分析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【題目詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.【題目點撥】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.6、D【解題分析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關(guān)鍵.7、B【解題分析】試題分析:“960萬”用科學記數(shù)法表示為9.6×106,故選B.考點:科學記數(shù)法—表示較大的數(shù).8、B【解題分析】分析:商場經(jīng)理要了解哪些型號最暢銷,所關(guān)心的即為眾數(shù).詳解:根據(jù)題意知:對商場經(jīng)理來說,最有意義的是各種型號的襯衫的銷售數(shù)量,即眾數(shù).故選:C.點睛:此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.9、B【解題分析】分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.詳解:0.000000823=8.23×10-1.故選B.點睛:本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、C【解題分析】

若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).【題目詳解】解:5的倒數(shù)是.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【題目詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過點M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵MA平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【題目點撥】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.12、1.【解題分析】

直接利用平移的性質(zhì)以及反比例函數(shù)圖象上點的坐標性質(zhì)得出D點坐標進而得出答案.【題目詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【題目點撥】本題考查了反比例函數(shù)圖象上的性質(zhì),正確得出D點坐標是解題關(guān)鍵.13、30°【解題分析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BOD=45°,再用∠BOD減去∠AOB即可.【題目詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.14、<【解題分析】

根據(jù)反比例函數(shù)的性質(zhì)即可解答.【題目詳解】當x=2時,,∵k=6時,∴y隨x的增大而減小∴x>2時,y<3故答案為:<【題目點撥】此題主要考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵在于利用反比例函數(shù)圖象上點的坐標特點判斷函數(shù)值的取值范圍.15、軸【解題分析】

根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【題目詳解】畫圖如下:結(jié)合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【題目點撥】本題考查了關(guān)于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.16、x≤2且x≠1【解題分析】

解:根據(jù)題意得:且x?1≠0,解得:且故答案為且三、解答題(共8題,共72分)17、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解題分析】試題分析:通過題意和表格,可知摸到白球的概率都接近與0.6,因此摸到白球的概率估計值為0.6.18、.(1)見解析(2)【解題分析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B、C旋轉(zhuǎn)后的對應(yīng)點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據(jù)扇形的面積公式列式進行計算即可得解.【題目詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.19、(1)詳見解析;(2)4.【解題分析】試題分析:(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結(jié)OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質(zhì).20、為;點Q的坐標為或.【解題分析】

依據(jù)拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關(guān)于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應(yīng)的x的值,則可得到點Q的坐標.【題目詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關(guān)于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【題目點撥】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質(zhì),發(fā)現(xiàn)點Q與點P關(guān)于x軸對稱,從而得到點Q的縱坐標是解題的關(guān)鍵.21、(1)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;(2)1350元.【解題分析】

1)設(shè)該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;

(2)設(shè)該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據(jù)銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據(jù)一次函數(shù)的性質(zhì)解決問題.【題目詳解】(1)設(shè)該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個.根據(jù)題意,得解得答:該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個.(2)設(shè)該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據(jù)題意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W隨a的增大而增大,∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1350元.【題目點撥】本題考查了二元一次方程組和一次函數(shù)的應(yīng)用,根據(jù)實際問題找到等量關(guān)系列方程組和建立一次函數(shù)模型,利用一次函數(shù)的性質(zhì)和自變量的取值范圍解決最值問題是解題的關(guān)鍵.22、(1)x=1(2)4<x≤415【解題分析】

(1)先將整理方程再乘以最小公分母移項合并即可;(2)求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出即可.【題目詳解】(1)+=4,方程整理得:=4,去分母得:x﹣5=4(2x﹣3),移項合并得:7x=7,解得:x=1;經(jīng)檢驗x=1是分式方程的解;(2)解①得:x≤解②得:x>4∴不等式組的解集是4<x≤,在數(shù)軸上表示不等式組的解集為:.【題目點撥】本題考查了解一元二次方程組與分式方程,解題的關(guān)鍵是熟練的掌握解一元二次方程組與分式方程運算法則.23、(1)80,100;(2)100件,22000元;(3)答案見解析.【解題分析】

(1)先設(shè)A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設(shè)購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設(shè)獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設(shè)獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時,當a=60時,當60<a<70時,各個階段的利潤,得出最大值.【題目詳解】解:(1)設(shè)A型商品的進價為a元/件,則B型商品的進價為(a+20)元/件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論