2023-2024學(xué)年河南省鄭州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第1頁
2023-2024學(xué)年河南省鄭州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第2頁
2023-2024學(xué)年河南省鄭州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第3頁
2023-2024學(xué)年河南省鄭州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第4頁
2023-2024學(xué)年河南省鄭州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年河南省鄭州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù),則的虛部為()A. B. C. D.12.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.43.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件4.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.5.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.6.過橢圓的左焦點(diǎn)的直線過的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.7.已知集合,集合,若,則()A. B. C. D.8.已知向量滿足,且與的夾角為,則()A. B. C. D.9.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.5410.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.5011.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種12.為雙曲線的左焦點(diǎn),過點(diǎn)的直線與圓交于、兩點(diǎn),(在、之間)與雙曲線在第一象限的交點(diǎn)為,為坐標(biāo)原點(diǎn),若,且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.14.一個(gè)村子里一共有個(gè)人,其中一個(gè)人是謠言制造者,他編造了一條謠言并告訴了另一個(gè)人,這個(gè)人又把謠言告訴了第三個(gè)人,如此等等.在每一次謠言傳播時(shí),謠言的接受者都是在其余個(gè)村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.15.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為__________.16.已知半徑為4的球面上有兩點(diǎn)A,B,AB=42,球心為O,若球面上的動(dòng)點(diǎn)C滿足二面角C-AB-O的大小為60°三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線及直線.(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;(2)若l與C交于A,B兩點(diǎn),O是原點(diǎn),且,求實(shí)數(shù)k的值.18.(12分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項(xiàng)和為,,若,,成等比數(shù)列.(1)求及;(2)設(shè),設(shè)數(shù)列的前項(xiàng)和,證明:.19.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點(diǎn)分別為、,且點(diǎn)、與橢圓的上頂點(diǎn)構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點(diǎn),且分別與直線和直線相交于點(diǎn)、.試判斷是否為定值,并說明理由.20.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.21.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.22.(10分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、C【解析】

根據(jù)對稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對稱性的應(yīng)用,屬于中檔題.3、A【解析】

畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.4、D【解析】

以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.5、D【解析】

確定點(diǎn)為外心,代入化簡得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長的計(jì)算,意在考查學(xué)生的計(jì)算能力.6、D【解析】

求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來求解,考查計(jì)算能力,屬于中等題.7、A【解析】

根據(jù)或,驗(yàn)證交集后求得的值.【詳解】因?yàn)?,所以?當(dāng)時(shí),,不符合題意,當(dāng)時(shí),.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.8、A【解析】

根據(jù)向量的運(yùn)算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.9、C【解析】

由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.10、C【解析】

先寫出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對二項(xiàng)式,其通項(xiàng)公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.11、C【解析】

根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.12、D【解析】

過點(diǎn)作,可得出點(diǎn)為的中點(diǎn),由可求得的值,可計(jì)算出的值,進(jìn)而可得出,結(jié)合可知點(diǎn)為的中點(diǎn),可得出,利用勾股定理求得(為雙曲線的右焦點(diǎn)),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點(diǎn)作,設(shè)該雙曲線的右焦點(diǎn)為,連接.,.,,,為的中點(diǎn),,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點(diǎn)睛】本題考查雙曲線離心率的求解,解題時(shí)要充分分析圖形的形狀,考查推理能力與計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時(shí).線段的長度最小,再求此時(shí)的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)?,所以同理得平面,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時(shí).線段的長度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識的理解掌握水平.14、【解析】

利用相互獨(dú)立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會(huì)回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個(gè)制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.15、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(16、4【解析】

設(shè)△ABC所在截面圓的圓心為O1,AB中點(diǎn)為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設(shè)△ABC所在截面圓的圓心為O1,AB中點(diǎn)為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因?yàn)镺A=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因?yàn)镺1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設(shè)四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點(diǎn)睛】本題考查了三棱錐的外接球問題,考查了學(xué)生的空間想象能力、邏輯推理能力及計(jì)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點(diǎn),可得,進(jìn)而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個(gè)不同的交點(diǎn),則方程組有兩個(gè)不同的實(shí)數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個(gè)不同交點(diǎn)時(shí),k的取值范圍是.(2)設(shè)交點(diǎn),直線l與y軸交于點(diǎn),,.,即,整理得,解得或或.又,或時(shí),的面積為.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計(jì)算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計(jì)算求解能力,屬于中檔題.18、(1),;(2)證明見解析.【解析】

(1)根據(jù)題中條件求出等差數(shù)列的首項(xiàng)和公差,然后根據(jù)首項(xiàng)和公差即可求出數(shù)列的通項(xiàng)和前項(xiàng)和;(2)根據(jù)裂項(xiàng)求和求出,根據(jù)的表達(dá)式即可證明.【詳解】(1)設(shè)的公差為,由題意有,且,所以,;(2)因?yàn)?,所以?【點(diǎn)睛】本題主要考查了等差數(shù)列基本量的求解,裂項(xiàng)求和法,屬于基礎(chǔ)題.19、(1)(2)為定值.【解析】

(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因?yàn)橹本€與橢圓相切,這有一個(gè)交點(diǎn),聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因?yàn)橹本€分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因?yàn)?所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點(diǎn)睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運(yùn)用,考查橢圓的定值問題,考查計(jì)算能力和轉(zhuǎn)化思想,是中檔題.20、(1)證明見解析;(2)證明見解析;【解析】

(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點(diǎn)睛】本題考查線段中點(diǎn)的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.21、(1)證明見解析(2)【解析】

(1)分別取,的中點(diǎn),,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,分別計(jì)算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計(jì)算即可.【詳解】(1)證明:分別取,的中點(diǎn),,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系由面,所以面的法向量可取,點(diǎn),點(diǎn),點(diǎn),,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點(diǎn)睛】本題考查由面面平行證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論