版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)Influenceofisolatorcharacteristicsontheresponseofbase-isolatedstructureVasantA.Matsaar1Z.S.JanidsAbstractTheinfluenceofisolatorcharacteristicsontheseismicresponseofmulti-storybase-isolatedstructureisinvestigated.Theisolatedbuildingismodeledasasheartypestructurewithlateraldegree-of-freedomateachfloor.Theisolatorsaremodeledbyusingtwodifferentmathematicalmodelsdepictedbybi-linearhystereticandequivalentlinearelastic-viscousbehaviors.ThecoupleddifferentialequationsofmotionfortheisolatedsystemarederivedandsolvedintheincrementalformusingNewmark'sstep-by-stepmethodofintegration.Thevariationoftopfloorabsoluteaccelerationandhearingdisplacementforvariousbi-linearsystemsunderdifferentearthquakesiscomputedtostudytheeffectsoftheshapeoftheisolatorhysteresisloop.Theinfluenceoftheshapeofisolatorforce-deformationloopontheresponseofisolatedstructureisstudiedunderthevariationofimportantsystemparameterssuchasisolatoryielddisplacement,superstructureflexibility,isolationtimeperiodandnumberofstoryofthebase-isolatedstructure.Itisobservedthatthecodespecifiedequivalentlinearelasticviscousdampingmodelofabi-linearhystereticsystemoverestimatesthedesignbearingdisplacementandunderestimatesthesuperstructureacceleration.Theresponseofbase-isolatedstructureissignificantlyinfluencedbytheshapeofhysteresisloopofisolator.Thelowvalueofyielddisplace-mentofisolator(i.e.slidingtypeisolationsystems)tendstoincreasethesuperstructureaccelerationsassociatedwithhighfrequencies.Further,thesuperstructureaccelerationalsoincreaseswiththeincreaseofthesuperstructureflexibility.keywords:Baseisolation;Earthquake;ElastomtricbearingSlidingsystem;Bearingdisplacement;Superstructureacceleration;Bi-linearhysteresis;Equivalentlinear.1IntroductionSeismicisolation,whichisnowrecognizedasamatureandefficienttechnology,canbeadoptedtoimprovetheseismicperformanceofstrategicallyimportantbuildingssuchasschools,hospitals,industrialstructuresetc.,inadditiontotheplaceswheresensitiveequipmentsareintendedtoprotectfromhazardouseffectsduringearthquake[1-3].Basedontheextentofcontroltobeachievedovertheseismicresponse,thechoiceoftheisolationsystemvariesandthereuponitsdesignisdonetosuittherequirementsofuseofthestructure.Inseismicallybase-isolatedsystems,thesuperstructureisdecoupledfromtheearthquakegroundmotionbyintroducingaflexibleinterfacebetweenthefoundationandthebaseofstructure.Thereby,theisolationsystemshiftsthefundamentaltimeperiodofthestructuretoalargevalueand/ordissipatestheenergyindamping,limitingtheamountofforcethatcanbetransferredtothesuperstructuresuchthatinter-storydriftandflooraccelerationsarereduceddrastically.Thematchingoffundamentalfrequenciesofbase-isolatedstructuresandthepredominantfrequencycontentsofearthquakesisalsoconsequentlyavoided,leadingtoaflexiblestructuralsystemmoresuitablefromearthquakeresistanceviewpoint.Thetwomostcommontypesofbaseisolationsystemsadoptedinpracticeutilizeeitherrubberbearingsorslidingsystemsbetweenthefoundationandsuperstructureforthepurposeofisolationfromgroundmotionsinthebuildingsaswellasbridges.Itisveryessentialtounderstandthedifferentparametersaffectingtheresponseofbase-isolatedstructurewhenusedforseismicprotectionofthestructures.Especiallyincaseofthebase-isolatedstructures,thathousessensitiveequipments,determinationofaccelerationimpartedandassociatedpeakdisplacementarethekeyissuesforthedesignengineer[4].Moreover,thepoundingandstructuralimpactsincaseofbaseisolatedstructuresmadeupontheadjacentstructures,whenseparationgapdistancesareinadequate,becomeamajorconcernbecausethesephenomenamayleadtocatastrophicfailuresleadingtoimmenseisolatordamage.Suchfailuresanddamagescanbeavoidedbyproperlyestimatingthepeakisolatordisplacementandrecommendationofappropriateisolationgapdistances.Inordertopredictpeakdisplacementanddetermineaccurateseparationgapdistancerequirementforabase-isolatedstructure,itismandatorytoknow,inprior,thedifferentparametersthataffectthebearingdisplacementanditsconsequenteffectonthesuperstructureacceleration.Thefailuresduetosuchimpactscanbeavoidedbyreducingthepeakbearingdisplacementbycompromisingwithincreaseinsuperstructureaccelerationtoanacceptableleveli.e.tolerablereductionineffectivenessofisolation.Selectionofdifferentparameterscharacterizinganisolationsystemisimportantinviewofkeepingacontroloverresponsequantitiesespeciallytheexcessivebearingdisplacementatisolatorlevel.Thebehaviorofisolationsystemsandthebaseisolatedstructuresisnowwellestablishedandcodesaredevelopedfordesigningthebase-isolatedstructures[5–9].Fornon-linearisolationsystems,thecodesallowtousetheequivalentlinearmodeltopermittheuseofresponsespectrummethodfordesigningtheisolatedstructures.Theequivalentlinearmodelsarebasedontheeffectivestiffnessatthedesigndisplacementandtheequivalentviscousdampingisevaluatedfromtheareaofthehysteresisloop.Thecomparisonofequivalentlinearandactualnon-linearmodelfortheresponseofisolatedbridgestructureshadbeendemonstratedinthepast[10–13]andshownthattheequivalentlinearmodelcanbeusedforpredictingtheactualnon-linearresponseofthesystem.However,theabovestudieswererestrictedtothebridgeidealizedasarigidbodyandthenon-linearbehavioroftheisolatorwaslimitedtothelead–rubberbearingsidealizedbybi-linearcharacteristics.Theequivalentlinearmodelmaygivedifferentresponseofisolatedstructuresincomparisontotheactualnon-linearmodelforflexiblesuperstructuresandthetypeofnon-linearhysteresisloopoftheisolatorassociatedwithslidingtypeisolationsystems.Therefore,itwillbeinterestingtostudythecomparisonofthetwomodelsfordifferenthystereticbehavioroftheisolatorandthesystemparameters.Here-in,theseismicresponseofmulti-storystructuresupportedonnon-linearbaseisolationsystemsisinvestigated.Thespecificobjectivesofthestudyare:(i)tocomparetheseismicresponseofbase-isolatedflexiblebuildingobtainedfromvariousbi-linearhystereticmodelanditsequivalentlinearmodel;(ii)tostudytheinfluenceofshapeoftheisolatorhysteresisloopanditsparameters(i.e.yielddisplacementandforce)ontheeffectivenessoftheisolationsystemand(iii)toinvestigatetheeffectsofsuperstructureflexibilityontheresponseofbase-isolatedstructures.2.Structuralmodelofbase-isolatedbuildingFig.1(a)showstheidealizedmathematicalmodeloftheN-storybase-isolatedbuildingconsideredforthepresentstudy.Thebase-isolatedbuildingismodeledasasheartypestructuremountedonisolationsystemswithonelateraldegree-of-freedomateachfloor.Followingassumptionsaremadeforthestructuralsystemunderconsideration:1.Thesuperstructureisconsideredtoremainwithintheelasticlimitduringtheearthquakeexcitation.Thisisareasonableassumptionastheisolationattemptstoreducetheearthquakeresponseinsuchawaythatthestructureremainswithintheelasticrange.2.Thefloorsareassumedrigidinitsownplaneandthemassissupposedtobelumpedateachfloorlevel.3.Thecolumnsareinextensibleandweightlessprovidingthelateralstiffness.4.Thesystemissubjectedtosinglehorizontalcomponentoftheearthquakegroundmotion.5.Theeffectsofsoil–structureinteractionarenottakenintoconsideration.Forthesystemunderconsideration,thegoverningequationsofmotionareobtainedbyconsideringtheequilibriumofforcesatthelocationofeachdegreesof-freedom.Theequationsofmotionforthesuperstructureunderearthquakegroundaccelerationareexpressedinthematrixformaswhere[Ms],[Cs]and[Ks]arethemass,dampingandstiffnessmatricesofthesuperstructure,respectively;aretheunknownrelativefloordisplacement,velocityandaccelerationvectors,respectively;andaretherelativeaccelerationofbasemassandearthquakegroundacceleration,respectively;and{r}isthevectorofinfluencecoefficients.ThecorrespondingequationofmotionforthebasemassunderearthquakegroundaccelerationisexpressedbywherembandFbarethebasemassandrestoringforcedevelopedintheisolationsystem,respectively;k1isthestorystiffnessoffirstfloor;andc1isthefirststorydamping.Therestoringforcedevelopedintheisolationsystem,Fbdependsuponthetypeofisolationsystemconsideredandapproximatenumericalmodelsshallbeused.3.MathematicalmodelingofisolatorsForthepresentstudy,theforce-deformationbehavioroftheisolatorismodeledas(i)non-linearhystereticrepresentedbythebi-linearmodeland(ii)thecodespecifiedequivalentlinearelastic–viscousdampingmodelforthenon-linearsystems.Acomparisonoftheresponseoftheisolatedstructurebyusingtheabovetwomodelswillbeusefulinestablishingthevalidityofthecodespecifiedequivalentlinearmodel.3.1.Bi-linearhystereticmodelofisolatorsThenon-linearforce-deformationbehavioroftheisolationsystemismodeledthroughthebi-linearhysteresisloopcharacterizedbythreeparametersnamely:(i)characteristicstrength,Q(ii)post-yieldstiffness,kband(iii)yielddisplacement,q(referFig.1(b)).Thebi-linearbehaviorisselectedbecausethismodelcanbeusedforallisolationsystemsusedinpractice.Thecharacteristicstrength,Qisrelatedtotheyieldstrengthoftheleadcoreintheelastomericbearingsandfrictioncoefficientoftheslidingtypeisolationsystems.Thepost-yieldstiffnessoftheisolationsystem,kbisgenerallydesignedinsuchawaytoprovidethespecificvalueoftheisolationperiod,Tbexpressedas:whereM=(+)isthetotalmassofthebase-isolatedstructure;andmjisthemassofjthfloorofthesuperstructure.Thus,thebi-linearhystereticmodelofthebaseisolationsystemcanbecharacterizedbyspecifyingthethreeparametersnamelyTb,Qandq.Thecharacteristicstrength,Qisnormalizedbytheweightofthebuilding,W=Mg(wheregisthegravitationalacceleration3.2.Equivalentlinearelastic–viscousdampingmodelofisolatorsAsperUniformBuildingCode[8]andInternationalBuildingCode[9],thenon-linearforce-deformationcharacteristicoftheisolatorcanbereplacedbyanequivalentlinearmodelthrougheffectiveelasticstiffnessandeffectiveviscousdamping.Thelinearforcedevelopedintheisolationsystemcanbeexpressedas:whereistheeffectivestiffness;c=2istheeffectiveviscousdampingconstant;istheeffectiveviscousdampingratio;=2=Teffistheeffectiveisolationfrequency;andT=2istheeffectiveisolationperiod.Theequivalentlinearelasticstiffnessforeachcycleofloadingiscalculatedfromexperimentallyobtainedforce-deformationcurveoftheisolatorandexpressedmathematicallyas:whereF+andF_arethepositiveandnegativeforcesattestdisplacementsD+andD–,respectively.Thus,thekeffistheslopeofthepeak-to-peakvaluesofthehysteresisloopasshowninFig.1(c).TheeffectiveviscousdampingoftheisolatorunitcalculatedforeachcycleofloadingisspecifiedaswhereEistheenergydissipationpercycleofloading.Ataspecifieddesignisolationdisplacement,D,theeffectivestiffnessanddampingratioforabi-linearsystemareexpressedas:4.SolutionofequationsofmotionClassicalmodalsuperpositiontechniquecannotbeemployedinthesolutionofequationsofmotionherebecause(i)thesystemisnon-classicallydampedbecauseofthedifferenceinthedampinginisolationsystemcomparedtothedampinginthesuperstructureand(ii)theforce-deformationbehaviorfortheisolationsystemsconsideredisnon-linear.Therefore,theequationsofmotionaresolvednumericallyusingNewmark’smethodofstep-by-stepintegration;adoptinglinearvariationofaccelerationoverasmalltimeintervalofDt.Thetimeintervalforsolvingthequationsofmotionistakenas0.02/200s(i.e.=0:0001s).5.NumericalstudySeismicresponseofamulti-storybase-isolatedbuildingisinvestigatedundervariousrealearthquakegroundmotionsforbi-linearandequivalentlinearisolatorcharacteristics.TheearthquakemotionsselectedforthestudyareN00Ecomponentof1989LomaPrietaearthquakerecordedatLosGatosPresentationCenter,N90Scomponentof1994NorthridgeearthquakerecordedatSylmarStationandN00Scomponentof1995KobeearthquakerecordedatJMA.Thepeakgroundacceleration(PGA)ofLomaPrieta,NorthridgeandKobeearthquakemotionsare0.57,0.60and0.86g,respectively.Thedisplacementandaccelerationspectraoftheabovegroundmotionsfor2%ofthecriticaldampingareshowninFig.2.Themaximumordinatesofthepseudo-accelerationare3.559,1.969and3.606goccurringatperiodof0.64,0.52and0.36sforLomaPrieta,NorthridgeandKobeearthquakes,respectively.Thisimpliesthattheselectedgroundmotionsarerecordedonstationshavingfirmsoilorrockyterrain.Theresponsequantitiesofinterestarethetopfloorabsoluteaccelerationandrelativebearingdisplacement.Theaboveresponsequantitiesareofimportancebecauseflooraccelerationsdevelopedinthesuperstructureareproportionaltotheforcesexertedbecauseofearthquakegroundmotion.Ontheotherhand,thebearingdisplacementsarecrucialinthedesignofisolationsystems.Forthepresentstudy,themassmatrixofthesuperstructure[Ms]isadiagonalmatrixandcharacterizedbythemassofeachfloor,whichiskeptconstant.Further,thebaseraftoftheisolatedstructureisconsideredsuchthatthemassratio,mb/m=1.Thedampingmatrixofthesuperstructure,[Cs],isnotknownexplicitly.Itisconstructedbyassumingthemodaldampingratioineachmodeofvibrationforsuperstructure,whichiskeptconstant.Thedampingratioofthesuperstructure,ns,istakenas0.02andkeptconstantforallmodesofvibration.Theinter-storystiffnessofthesuperstructureisadjustedsuchthataspecifiedfundamentaltimeperiodofthesuperstructure,Tsisachieved.Thenumberofstoryinthesuperstructureisconsideredas1and5.Forthefive-storybuilding,theinter-storystiffnessk1,k2,k3,k4andk5aretakeninproportionof1,1.5,2,2.5and3,respectively.5.1.Comparisonofresponseforbi-linearandequivalentlinearmodelInthissection,acomparisonofearthquakeresponseofbase-isolatedstructureismadeforbi-linearandequivalentlinearmodelofisolationsystems.Thebilinearbehaviorisselectedinawaytorepresenttheforce-deformationbehaviorofthecommonlyusedisolationsystemssuchaselastomeric(i.e.lead–rubberbearings)andslidingsystems(i.e.frictionpendulumsystem).Theequivalentlinearbehaviorisconsideredbyselectingtheappropriatevaluesoftheeffectiveisolationtimeperiod,Teffandtheeffectiveviscousdamping,beff.Thedesigndisplacement,D,isconsideredasthemaximumisolatordisplacementofarigidsuperstructureisolatedbythelinearisolationsystemhavingtheparametersTeffandbeff.Fortheassumedvalueoftheyielddisplacement,q,dependinguponthetypeofisolationsystem,theparametersofthebi-linearhysteresislooparederivedsuchthatithasaneffectivetimeperiodasTeffanddampingratiobefffromEqs.(7)and(8),respectively,atthedesigndisplacementD.Thevaluesofdesigndisplacement,D,usedforsuchtransformationare53.61,34.06and32.58cmunderLomaPrieta,NorthridgeandKobeearthquakegroundmotions,respectively,obtainedfromequivalentlinearmodelwithT=2sand=0.1.InFig.3,timevariationoftopfloorabsoluteaccelerationandbearingdisplacementofafive-storybuildingisplottedforlinearandbi-linearisolatormodelsunderLomaPrieta,1989earthquakemotion.Theparametersoftheequivalentlinearsystemconsideredare:T=2sand=0.1.Forthebi-linearsystem,twovaluesofyielddisplacementi.e.0.0001cmand2.5cmareconsideredwhichcorrespondstofrictionpendulumsystemandlead–rubberbearingisolators,respectively.Thepeaksuperstructureaccelerationobtainedbybi-linearhystereticmodelare0.665and0.701gfortheyielddisplacementof2.5and10_4cm,respectively.Thecorrespondingpeaksuperstructureaccelerationobtainedfromtheequivalentlinearmodelis0.582g.Thisimpliesthatthetopflooraccelerationinabase-isolatedstructureisunderestimatedbytheequivalentlinearmodelascomparedtothatobtainedfromtheactualbi-linearhystereticmodel.Ontheotherhand,thepeakbearingdisplacementobtainedbythebi-linearhystereticmodelforthesamesystemis42.52and40.17cm,fortheyielddisplacementsof2.5and10_4cm,respectively,whereas,thatobtainedfromitsequivalentlinearmodelis53.06cm.Thisindicatesthatthebearingdisplacementinabaseisolatedstructureisoverestimatedbytheequivalentlinearmodelascomparedtothatobtainedfromthebi-linearhystereticmodel.Similartrendofcomparisonbetweenlinearandbi-linearmodelsisalsoobservedforNorthridge,1994andKobe,1995earthquakesmotionsasshowninFigs.4and5,respectively.Thus,itcanbeconcludedthattheequivalentlinearmodelunder-predictsthepeaksuperstructureaccelerationandover-predictsthebearingdisplacementascomparedtotheactualbi-linearhystereticmodel.Thecorrespondingforce-deformationdiagramsareshowninFig.6forequivalentlinearandbi-linearmodelsoftheisolationsystem.Fig.7showsthecomparisonofcorrespondingFFTamplitudespectra(forbothequivalentlinearandbilinearhystereticmodels)ofthetopflooraccelerationforfive-storynon-isolatedandisolatedstructuresunderdifferentearthquakemotions(referFigs.3–5forthetimehistoryoftopflooracceleration).ThereisasignificantdifferencebetweentheFFTspectraofthetopflooraccelerationobtainedfromtheequivalentlinearandbi-linearmodels.TheequivalentlinearmodelshowsthepeakofFourieramplitudeinthevicinityof0.5Hz(i.e.thiscorrespondstotheisolationfrequency)andinsignificantcontributionfromtheotherfrequencies.Ontheotherhand,forthebi-linearsystems,thereiscontributioninthesuperstructureaccelerationforwiderangingfrequenciesespeciallyfromthehigherfrequencies.Theseeffectsarefoundtobemorepronouncedforthebi-linearsystemwithlowisolatoryielddisplacement(i.e.q=0.001cmrepresentingslidingtypeisolationsystem).Thesehigherfrequencycontributionsinthesuperstructureaccelerationcanbedetrimentaltothesensitiveequipmentswithhighfrequencyplacedwithinthebase-isolatedstructures.Thus,thebaseisolationsystemswithverylowyielddisplacementtransmitmoreaccelerationinthesuperstructureassociatedwithhighfrequenciesandthisphenomenonisnotpredictedbytheequivalentlinearmodels.Thecomparisonofthepeakresponseoftheisolatedstructureforequivalentlinearandbi-linearmodelsisshowninTables1and2forsingleandfive-storystructure,respectively.Theresponseiscomparedfordifferentvaluesofeffectiveisolationtimeperiod(i.e.T=2,2.5,3s),effectiveisolationdamping(i.e.=0.1.0:05,0.1)andisolatoryielddisplacement(i.e.q=0.001,2.5,5cm)underthreeearthquakemotions.Asobservedearlier,thepeaktopflooraccelerationforallearthquakegroundmotionsishigherforbi-linearmodelsincomparisontotheequivalentlinearforallcombinationsofsystemparameters.Thisconfirmsthatthesuperstructureaccelerationwillbeunderestimatedifthebi-linearforce-deformationcharacteristicoftheisolatorismodeledbyanequivalentlinearmodel.Ontheotherhand,thepeakbearingdisplacementspredictedbytheequivalentlinearmodelishigherthanthecorrespondingbi-linearhystereticmodel.InsomecasesunderKobe,1995earthquakemotion,thepeakbearingdisplacementsestimatedbytheequivalentlinearmodelarelessthanthebi-linearmodelforq=2:5and5cm.Thisisattributedduetothetypicalvariationofthespectraldisplacementofthisearthquakemotion,inwhichthepeakdisplacementdecreaseswiththeincreaseoftimeperiodintherangefrom1.5to3s(referFig.2).Thus,theequivalentlinearmodelofhystereticisolatorsystemover-predictsthepeakbearingdisplacements.5.2.EffectsofisolatoryielddisplacementInordertounderstandtheinfluenceoftheshapeofthebi-linearhysteresisloopoftheisolator,thevariationofpeaktopflooraccelerationandbearingdisplacementofafive-storystructureisplottedagainstyielddisplacement,qinFigs.8–10underLomaPrieta,1989,Northridge,1994andKobe,1995earthquakes,respectively.Theresponsesareshownforthreeisolatorcharacteristicstrengths(i.e.Q/W=0:05,0.075and0.1)andthreevaluesofisolationtimeperiodsbasedonthepost-yieldstiffness(i.e.Tb2,2.5and3s).Itisobservedthatwiththeincreaseintheisolatoryielddisplacementthetopflooraccelerationdecreasessubstantially.Ontheotherhand,thebearingdisplacementshowsmarginalincreasingtrendwiththeincreaseintheisolatoryielddisplacement.Thisimpliesthattheyielddisplacement(ortheshapeofthehysteresisloop)hassignificanteffectsontheresponseofthebaseisolatedstructure.Thissignificantinfluenceofyielddisplacementontheresponseofthebase-isolatedstructureisnotcapturedbyanequivalentlinearviscousmodelastheqhadnoeffectontheeffectivestiffnessandaverylittleeffectontheeffectivedampingforlargedesigndisplacement(referEqs.(7)and(8)).Further,itisalsoobservedfromFigs.8–10thatwiththeincreaseincharacteristicstrength,Q,thetopflooraccelerationincreasesandthebearingdisplacementdecreases.Thisisexpectedbecauseforhigherisolatorcharacteristicstrengths,theisolationsystemremainsmuchmoretimeintheelasticstatewhichproduceslessflexibilityinthestructuralsystemandtherebylessenergydissipation.Asaresult,thesuperstructureaccelerationincreasesandbearingdisplacementdecreaseswiththeincreaseoftheisolatorcharacteristicstrength.Thus,itcanbeconcludedthattheresponseofbase-isolatedstructureissignificantlyinfluencedbytheshapeandparametersofthebi-linearhysteresisloopoftheisolator.5.3.EffectsofsuperstructureflexibilityTheflexibilityinthebase-isolatedstructureismainlyconcentratedattheisolationlevel,asaresult,theresponseofbase-isolatedstructurecanbeinvestigatedbymodelingthesuperstructureasrigid[14–16].However,itwillbeinterestingtocomparetheseismicresponseofabase-isolatedstructurewithsuperstructure\odeledasrigidandflexibletostudytheinfluenceofthesuperstructureflexibility.Fig.11showsthevariationoftopflooraccelerationandbearingdisplacementofafive-storybase-isolatedstructureagainstthesuperstructurefundamentaltimeperiod,Ts.Theisolationsystemparametersconsideredareisolationperiod,T=2s,normalizedcharacteristicsstrength,Q/W=0:05anddifferentisolatoryielddisplacementvaluessuchasq10_4,2.4and5cm.Itisobservedthatthereissignificantdifferenceinthetopflooraccelerationobtainedwhensuperstructureisrigid(i.e.Ts=0s)andflexible(i.e.Ts>0).Thereissubstantialincreaseinthetopflooraccelerationasthefundamentaltimeperiodofsuperstructureincreases.Thisimpliesthatthesuperstructureaccelerationswillbeunder-estimatedifthesuperstructureflexibilityisignoredanditismodeledasarigidbody.Theincreaseinthesuperstructureaccelerationsisfoundtobemorepronouncedfortheisolationsystemwithlowvalueofyielddisplacement(i.e.slidingtypesystems).Ontheotherhand,thebearingdisplacementisnotmuchinfluencedwiththeincreaseinsuperstructureflexibility.SimilareffectsofthesuperstructureflexibilityaredepictedinFig.12wherethecorrespondingresponsesareshownforTb=3sunderdifferentearthquakemotions.Thus,theflexibilityofsuperstructureincreasesthesuperstructureaccelerationbutitdoesnothavesignificantinfluenceonthebearingdisplacements.6.ConclusionsInfluenceofisolatorcharacteristicparametersontheseismicresponseofmulti-storybase-isolatedstructuresisinvestigated.Acomparisonoftheresponseoftheisolatedstructureforequivalentlinearandbi-linearforce-deformationbehavioroftheisolatorismade.Inaddition,theeffectsoftheshapeofisolatorloopandsuperstructureflexibilityontheseismicresponseofthebase-isolatedstructurearealsoinvestigated.Fromthetrendsoftheresultsofthepresentstudy,followingconclusionsaredrawn1.Thecodespecifiedequivalentlinearelastic–viscousdampingmodelforabi-linearhystereticmodeloftheisolatorunder-predictsthesuperstructureaccelerationandover-predictsthebearingdisplacement.2.Thereisasignificantdifferenceinthefrequencycontentofsuperstructureaccelerationofbase-isolatedstructurepredictedbytheequivalentlinearandbi-linearisolatormodels.3.Theresponseofbase-isolatedstructureissignificantlyinfluencedbytheshapeandparametersofthebi-linearhysteresisloopoftheisolator.4.Thebaseisolationsystemwithverylowyielddisplacement(i.e.slidingtypeisolationsystems)transmitsmoreearthquakeaccelerationsintothesuperstructureassociatedwithhighfrequencies.Thisphenomenonisnotpredictedbytheequivalentlinearmodelsofanalysis.5.Theflexibilityofsuperstructureincreasesthesuperstructureacceleration.However,thebearingdisplacementsarenotmuchinfluencedbythesuperstructureflexibility.References[1]KellyJM.Aseismicbaseisolation:reviewandbibliography.SoilDynamicsandEarthquakeEngineering1986;13:202–16.[2]BuckleIG,MayesRL.Seismicisolationhistory,applicationandperformance—aworldreview.EarthquakeSpectra1990;6:161–202.[3]JangidRS,DattaTK.Seismicbehaviorofbaseisolatedbuilding:astate-of-the-art-review.StructuresandBuildings1995;110(2):186–203.[4]StantonJ,RoederC.Advantagesandlimitationsofseismicisolation.EarthquakeSpectra1991;2:301–22.[5]KellyJM.Baseisolation:li
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴金屬首飾檢驗(yàn)員風(fēng)險(xiǎn)評(píng)估與管理測(cè)試考核試卷含答案
- 海水捕撈工成果知識(shí)考核試卷含答案
- 2025年結(jié)核病的自查報(bào)告
- 銅粉購(gòu)銷(xiāo)合同范本
- 廣安市全肥養(yǎng)殖家庭農(nóng)場(chǎng)生豬養(yǎng)殖項(xiàng)目報(bào)告書(shū)
- 分銷(xiāo)商合同協(xié)議書(shū)
- 異地簽協(xié)議書(shū)合同
- 房產(chǎn)合同補(bǔ)償協(xié)議
- 沖床購(gòu)銷(xiāo)合同范本
- 分銷(xiāo)協(xié)議銷(xiāo)售合同
- 2025年公需課考試題庫(kù)(附答案)
- 2024年6月大學(xué)英語(yǔ)四級(jí)真題與答案解析完整版
- 迪士尼收購(gòu)??怂箙f(xié)議書(shū)
- 售電交易員考試題及答案
- 食品添加劑檢驗(yàn)員崗位面試問(wèn)題及答案
- 礦山機(jī)電專(zhuān)業(yè)人才培養(yǎng)方案(中職)
- 電商公司選品管理制度
- 鋁合金鑄造項(xiàng)目可行性研究報(bào)告
- 《旅游職業(yè)禮儀》課件 項(xiàng)目三:日常交際禮儀/任務(wù)一:見(jiàn)面禮儀
- 第19課《只有一個(gè)地球》第二課時(shí) 課件
- 噴涂角度對(duì)鋁-銅接觸件冷噴涂銅防護(hù)涂層結(jié)構(gòu)形成及耐蝕性能的影響
評(píng)論
0/150
提交評(píng)論