版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省東莞市第四高級(jí)中學(xué)2024屆高三高考適應(yīng)性考試(零診)數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.2.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.3.雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.4.已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.55.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.6.已知向量,且,則m=()A.?8 B.?6C.6 D.87.中國(guó)古代用算籌來(lái)進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位……用縱式表示,十位、千位、十萬(wàn)位……用橫式表示,則56846可用算籌表示為()A. B. C. D.8.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.119.設(shè)復(fù)數(shù),則=()A.1 B. C. D.10.定義在上函數(shù)滿足,且對(duì)任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.11.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.12.過(guò)拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為_(kāi)_____.14.已知變量(m>0),且,若恒成立,則m的最大值________.15.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為_(kāi)_____.16.已知函數(shù),則曲線在點(diǎn)處的切線方程是_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,且.若點(diǎn)為的準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)作的兩條切線,其中為切點(diǎn).(1)求拋物線的方程;(2)求證:直線恒過(guò)定點(diǎn),并求面積的最小值.18.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.19.(12分)某動(dòng)漫影視制作公司長(zhǎng)期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng),同時(shí)也為公司贏得豐厚的利潤(rùn).該公司年至年的年利潤(rùn)關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤(rùn)與年份代號(hào)線性相關(guān)).年份年份代號(hào)年利潤(rùn)(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司年(年份代號(hào)記為)的年利潤(rùn);(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤(rùn)的實(shí)際值大于由(Ⅰ)中線性回歸方程計(jì)算出該年利潤(rùn)的估計(jì)值時(shí),稱該年為級(jí)利潤(rùn)年,否則稱為級(jí)利潤(rùn)年.將(Ⅰ)中預(yù)測(cè)的該公司年的年利潤(rùn)視作該年利潤(rùn)的實(shí)際值,現(xiàn)從年至年這年中隨機(jī)抽取年,求恰有年為級(jí)利潤(rùn)年的概率.參考公式:,.20.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.21.(12分)設(shè)前項(xiàng)積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,且,求的最小值.22.(10分)記為數(shù)列的前項(xiàng)和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【題目詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【題目點(diǎn)撥】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.2、D【解題分析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【題目詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【題目點(diǎn)撥】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.3、D【解題分析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【題目詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)椋纯傻玫?,故選:D.【題目點(diǎn)撥】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問(wèn)題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.4、A【解題分析】
計(jì)算,代入回歸方程可得.【題目詳解】由題意,,∴,解得.故選:A.【題目點(diǎn)撥】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過(guò)中心點(diǎn).5、D【解題分析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【題目詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【題目點(diǎn)撥】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.6、D【解題分析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【題目詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【題目點(diǎn)撥】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.7、B【解題分析】
根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案.【題目詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位用縱式表示;十位,千位,十萬(wàn)位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的.故選:.【題目點(diǎn)撥】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.8、A【解題分析】
根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【題目詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^(guò)點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【題目點(diǎn)撥】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡(jiǎn)單題.9、A【解題分析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡(jiǎn)即可求解.【題目詳解】復(fù)數(shù),則故選:A.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡(jiǎn)求值,屬于基礎(chǔ)題.10、B【解題分析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡(jiǎn)題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【題目詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對(duì)應(yīng)于恒成立,即即對(duì)恒成立即對(duì)恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【題目點(diǎn)撥】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.11、C【解題分析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【題目詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【題目點(diǎn)撥】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡(jiǎn)單題.12、B【解題分析】
利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【題目詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【題目點(diǎn)撥】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【題目詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點(diǎn)撥】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.14、【解題分析】
在不等式兩邊同時(shí)取對(duì)數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【題目詳解】不等式兩邊同時(shí)取對(duì)數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【題目點(diǎn)撥】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對(duì)數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵15、【解題分析】
求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點(diǎn)的坐標(biāo),然后求解面積.【題目詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點(diǎn)的坐標(biāo),,,,則三角形的面積為.故答案為:【題目點(diǎn)撥】本題考查雙曲線方程的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中檔題.16、【解題分析】
求導(dǎo),x=0代入求k,點(diǎn)斜式求切線方程即可【題目詳解】則又故切線方程為y=x+1故答案為y=x+1【題目點(diǎn)撥】本題考查切線方程,求導(dǎo)法則及運(yùn)算,考查直線方程,考查計(jì)算能力,是基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析,最小值為4【解題分析】
(1)根據(jù)焦點(diǎn)到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判斷出直線恒過(guò)拋物線焦點(diǎn).求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【題目詳解】(1)依題意,解得(負(fù)根舍去)∴拋物線的方程為(2)設(shè)點(diǎn),由,即,得∴拋物線在點(diǎn)處的切線的方程為,即∵,∴∵點(diǎn)在切線上,①,同理,②綜合①、②得,點(diǎn)的坐標(biāo)都滿足方程.即直線恒過(guò)拋物線焦點(diǎn)當(dāng)時(shí),此時(shí),可知:當(dāng),此時(shí)直線直線的斜率為,得于是,而把直線代入中消去得,即:當(dāng)時(shí),最小,且最小值為4【題目點(diǎn)撥】本小題主要考查點(diǎn)到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過(guò)定點(diǎn)問(wèn)題,考查拋物線中三角形面積的最值的求法,考查運(yùn)算求解能力,屬于難題.18、(1)①當(dāng)時(shí),在單調(diào)遞增,②當(dāng)時(shí),單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見(jiàn)解析【解題分析】
(1)先求解導(dǎo)函數(shù),然后對(duì)參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【題目詳解】(1),①當(dāng)時(shí),恒成立,則在單調(diào)遞增②當(dāng)時(shí),令得,解得,又,∴∴當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個(gè)實(shí)數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒(méi)有證明,扣3分)關(guān)于的證明:(1)且時(shí),(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【題目點(diǎn)撥】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對(duì)于含參函數(shù)單調(diào)性的分析,可通過(guò)分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達(dá)到證明不等式的目的.19、(Ⅰ),該公司年年利潤(rùn)的預(yù)測(cè)值為億元;(Ⅱ).【解題分析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進(jìn)而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤(rùn)的估計(jì)值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計(jì)算出從年至年這年被評(píng)為級(jí)利潤(rùn)年的年數(shù),然后利用組合計(jì)數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【題目詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤(rùn)的預(yù)測(cè)值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤(rùn)的估計(jì)值分別為、、、、、、、(單位:億元),其中實(shí)際利潤(rùn)大于相應(yīng)估計(jì)值的有年.故這年中被評(píng)為級(jí)利潤(rùn)年的有年,評(píng)為級(jí)利潤(rùn)年的有年.記“從年至年這年的年利潤(rùn)中隨機(jī)抽取年,恰有年為級(jí)利潤(rùn)年”的概率為,.【題目點(diǎn)撥】本題考查利用最小二乘法求回歸直線方程,同時(shí)也考查了古典概型概率的計(jì)算,涉及組合計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.20、(Ⅰ)極大值為:,無(wú)極小值;(Ⅱ)見(jiàn)解析.【解題分析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問(wèn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 福州市土地登記代理人考試培訓(xùn)試卷
- 餐飲部員工服務(wù)禮儀培訓(xùn)
- 網(wǎng)絡(luò)安全專項(xiàng)培訓(xùn)方案及考試題庫(kù)
- 人力資源專員員工招聘及培訓(xùn)工作績(jī)效評(píng)定表
- 企業(yè)招聘與員工培訓(xùn)平臺(tái)
- 規(guī)劃2026年智慧城市的智能交通管理系統(tǒng)項(xiàng)目分析方案
- 面向2026年消費(fèi)升級(jí)市場(chǎng)潛力挖掘的電商項(xiàng)目分析方案
- 運(yùn)營(yíng)流程再造2026降本增效項(xiàng)目分析方案
- 2026年物流倉(cāng)儲(chǔ)自動(dòng)化效率提升分析方案
- GB 7300.310-2025飼料添加劑第3部分:礦物元素及其絡(luò)(螯)合物酵母硒
- 空調(diào)安裝應(yīng)急預(yù)案
- 木屋架維修施工方案
- 人工智能+技術(shù)體系變革智能物流研究報(bào)告
- 借用別人公司賬戶協(xié)議書(shū)
- 春節(jié)期間駕駛員安全教育
- 西湖龍井采購(gòu)合同范本
- 集團(tuán)公司職業(yè)技能等級(jí)認(rèn)定管理辦法
- 2025年紫金礦業(yè)ai面試題目及答案
- 復(fù)發(fā)性叢集性頭痛
- HY/T 0437-2024海洋生物資源碳增匯計(jì)量和監(jiān)測(cè)技術(shù)規(guī)范大型藻類(筏式養(yǎng)殖)
- 下肢動(dòng)脈硬化閉塞癥介入治療講課件
評(píng)論
0/150
提交評(píng)論