2024屆江西省新余市重點中學高三下學期第一次調研測試數學試題_第1頁
2024屆江西省新余市重點中學高三下學期第一次調研測試數學試題_第2頁
2024屆江西省新余市重點中學高三下學期第一次調研測試數學試題_第3頁
2024屆江西省新余市重點中學高三下學期第一次調研測試數學試題_第4頁
2024屆江西省新余市重點中學高三下學期第一次調研測試數學試題_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省新余市重點中學高三下學期第一次調研測試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當的外接圓面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.2.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④3.函數的定義域為()A.或 B.或C. D.4.已知平面平面,且是正方形,在正方形內部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.5.已知,若則實數的取值范圍是()A. B. C. D.6.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.7.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.8.已知集合,,若,則()A.4 B.-4 C.8 D.-89.若集合,,則=()A. B. C. D.10.點為的三條中線的交點,且,,則的值為()A. B. C. D.11.在中所對的邊分別是,若,則()A.37 B.13 C. D.12.若函數恰有3個零點,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數14.已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是__________.15.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.16.已知數列與均為等差數列(),且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設在點處的切線與軸的交點為,證明:直線繞點旋轉時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.18.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數據,得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數據的平均值和樣本方差;(結果取整數,同一組中的數據用該組區(qū)間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數,求的分布列和數學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.19.(12分)已知,函數有最小值7.(1)求的值;(2)設,,求證:.20.(12分)已知,,分別為內角,,的對邊,且.(1)證明:;(2)若的面積,,求角.21.(12分)已知數列的前項和為,且點在函數的圖像上;(1)求數列的通項公式;(2)設數列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;22.(10分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【題目詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【題目點撥】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.2、D【解題分析】

因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.3、A【解題分析】

根據偶次根式被開方數非負可得出關于的不等式,即可解得函數的定義域.【題目詳解】由題意可得,解得或.因此,函數的定義域為或.故選:A.【題目點撥】本題考查具體函數定義域的求解,考查計算能力,屬于基礎題.4、C【解題分析】

根據與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【題目詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(點在第一象限內),由得,即,化簡得,由于點在第一象限內,所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【題目點撥】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數形結合的數學思想方法,屬于難題.5、C【解題分析】

根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【題目詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【題目點撥】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,6、D【解題分析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【題目詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【題目點撥】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.7、A【解題分析】

根據平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數形結合求解.【題目詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【題目點撥】本題主要考查軌跡的求法和圓的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.8、B【解題分析】

根據交集的定義,,可知,代入計算即可求出.【題目詳解】由,可知,又因為,所以時,,解得.故選:B.【題目點撥】本題考查交集的概念,屬于基礎題.9、C【解題分析】試題分析:化簡集合故選C.考點:集合的運算.10、B【解題分析】

可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【題目詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【題目點撥】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.11、D【解題分析】

直接根據余弦定理求解即可.【題目詳解】解:∵,∴,∴,故選:D.【題目點撥】本題主要考查余弦定理解三角形,屬于基礎題.12、B【解題分析】

求導函數,求出函數的極值,利用函數恰有三個零點,即可求實數的取值范圍.【題目詳解】函數的導數為,令,則或,上單調遞減,上單調遞增,所以0或是函數y的極值點,函數的極值為:,函數恰有三個零點,則實數的取值范圍是:.故選B.【題目點撥】該題考查的是有關結合函數零點個數,來確定參數的取值范圍的問題,在解題的過程中,注意應用導數研究函數圖象的走向,利用數形結合思想,轉化為函數圖象間交點個數的問題,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13、12【解題分析】

畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數的最大值.【題目詳解】根據約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【題目點撥】本題考查線性規(guī)劃的簡單應用,屬于基礎題.14、【解題分析】

根據雙曲線方程,設及,將代入雙曲線方程并化簡可得,由題意的最小值為,結合平面向量數量積的坐標運算化簡,即可求得的值,進而求得離心率即可.【題目詳解】設點,,則,即,∵,,,當時,等號成立,∴,∴,∴.故答案為:.【題目點撥】本題考查了雙曲線與向量的綜合應用,由平面向量數量積的最值求離心率,屬于中檔題.15、【解題分析】

根據題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【題目詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【題目點撥】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.16、20【解題分析】

設等差數列的公差為,由數列為等差數列,且,根據等差中項的性質可得,,解方程求出公差,代入等差數列的通項公式即可求解.【題目詳解】設等差數列的公差為,由數列為等差數列知,,因為,所以,解得,所以數列的通項公式為,所以.故答案為:【題目點撥】本題考查等差數列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)是,理由見解析.【解題分析】

(1)根據兩個曲線的焦點相同,得到,再根據與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設點,根據導數的幾何意義得到曲線在點處的切線方程,求出點的坐標,利用向量的數量積得出,則問題得以證明;(3)設直線,直線,、、,推導出以及,求出和,通過化簡計算可得出為定值,進而可得出結論.【題目詳解】(1)由知其焦點的坐標為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關于軸對稱,且的方程為,由此易知與的公共點的坐標為,,②聯立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉時,總是鈍角三角形;(3)設直線,直線,、、,則,設向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【題目點撥】本題考查了圓錐曲線的和直線的位置與關系,考查鈍角三角形的判定以及三角形面積為定值的求解,關鍵是聯立方程,構造方程,利用韋達定理,以及向量的關系,得到關于斜率的方程,計算量大,屬于難題.18、(1)60;25(2)見解析,2.1(3)可以認為該校學生的體重是正常的.見解析【解題分析】

(1)根據頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數學期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【題目詳解】解:(1)(2)由已知可得從全校學生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當于3次獨立重復實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數學期望(3)由題意知服從正態(tài)分布,則,所以可以認為該校學生的體重是正常的.【題目點撥】本題考查了由頻率分布直方圖求進行數據估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數據的精度和題目中數據的小數后位數相同.19、(1).(2)見解析【解題分析】

(1)由絕對值三解不等式可得,所以當時,,即可求出參數的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【題目詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【題目點撥】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.20、(1)見解析;(2)【解題分析】

(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【題目詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【題目點撥】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉化的數學思想方法,考查運算求解能力,屬于中檔題.21、(1)(2)當n為偶數時,;當n為奇數時,.(3)【解題分析】

(1)根據,討論與兩種情況,即可求得數列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數或偶數時的通項公式.也可利用數學歸納法,先猜想出通項公式,再用數學歸納法證明.(3)分類討論,當n為奇數或偶數時,分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論