版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鹽城市匯文中學2024屆高三數學試題3月摸底考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為實現(xiàn)國民經濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占2019年貧困戶總數的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍2.函數(且)的圖象可能為()A. B. C. D.3.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.4.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于5.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.6.若向量,則()A.30 B.31 C.32 D.337.已知,,,,則()A. B. C. D.8.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.9.費馬素數是法國大數學家費馬命名的,形如的素數(如:)為費馬索數,在不超過30的正偶數中隨機選取一數,則它能表示為兩個不同費馬素數的和的概率是()A. B. C. D.10.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-111.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.12.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.14.函數的極大值為________.15.已知數列與均為等差數列(),且,則______.16.在的展開式中,常數項為________.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.18.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.19.(12分)已知數列為公差為d的等差數列,,,且,,依次成等比數列,.(1)求數列的前n項和;(2)若,求數列的前n項和為.20.(12分)已知(1)當時,判斷函數的極值點的個數;(2)記,若存在實數,使直線與函數的圖象交于不同的兩點,求證:.21.(12分)如圖,三棱柱中,側面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.22.(10分)某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數量,為此參考了根據100套該款凈水系統(tǒng)在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.表1:一級濾芯更換頻數分布表一級濾芯更換的個數89頻數6040圖2:二級濾芯更換頻數條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內需要更換的二級濾芯總數,求的分布列及數學期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數.若,且,以該客戶的凈水系統(tǒng)在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
設貧困戶總數為,利用表中數據可得脫貧率,進而可求解.【題目詳解】設貧困戶總數為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【題目點撥】本題考查了概率與統(tǒng)計,考查了學生的數據處理能力,屬于基礎題.2、D【解題分析】因為,故函數是奇函數,所以排除A,B;取,則,故選D.考點:1.函數的基本性質;2.函數的圖象.3、C【解題分析】
由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【題目詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C【題目點撥】本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.4、C【解題分析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.5、C【解題分析】
設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【題目詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【題目點撥】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.6、C【解題分析】
先求出,再與相乘即可求出答案.【題目詳解】因為,所以.故選:C.【題目點撥】本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎題.7、D【解題分析】
令,求,利用導數判斷函數為單調遞增,從而可得,設,利用導數證出為單調遞減函數,從而證出,即可得到答案.【題目詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【題目點撥】本題考查了作差法比較大小,考查了構造函數法,利用導數判斷式子的大小,屬于中檔題.8、C【解題分析】
根據橢圓的定義可得,,再利用余弦定理即可得到結論.【題目詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【題目點撥】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.9、B【解題分析】
基本事件總數,能表示為兩個不同費馬素數的和只有,,,共有個,根據古典概型求出概率.【題目詳解】在不超過的正偶數中隨機選取一數,基本事件總數能表示為兩個不同費馬素數的和的只有,,,共有個則它能表示為兩個不同費馬素數的和的概率是本題正確選項:【題目點撥】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.10、D【解題分析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【題目詳解】由于,所以,即,,即,解得或.故選:D【題目點撥】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.11、D【解題分析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【題目詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【題目點撥】本道題考查了余弦定理以及雙曲線的性質,難度偏難.12、B【解題分析】
利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【題目詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【題目點撥】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數和所求事件包含的基本事件數.(1)基本事件總數較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數原理的正確使用.14、【解題分析】
對函數求導,根據函數單調性,即可容易求得函數的極大值.【題目詳解】依題意,得.所以當時,;當時,.所以當時,函數有極大值.故答案為:.【題目點撥】本題考查利用導數研究函數的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.15、20【解題分析】
設等差數列的公差為,由數列為等差數列,且,根據等差中項的性質可得,,解方程求出公差,代入等差數列的通項公式即可求解.【題目詳解】設等差數列的公差為,由數列為等差數列知,,因為,所以,解得,所以數列的通項公式為,所以.故答案為:【題目點撥】本題考查等差數列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.16、【解題分析】
的展開式的通項為,取計算得到答案.【題目詳解】的展開式的通項為:,取得到常數項.故答案為:.【題目點撥】本題考查了二項式定理,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【題目詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【題目點撥】本題考查證明線面垂直,解題時注意線面垂直與線線垂直的相互轉化.考查求二面角,求空間角一般是建立空間直角坐標系,用向量法易得結論.18、(1).(2).【解題分析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設,0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據夾角公式計算得到答案.【題目詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【題目點撥】本題考查了異面直線夾角,根據二面角求長度,意在考查學生的空間想象能力和計算能力.19、(1)(2)【解題分析】
(1)利用等差數列的通項公式以及等比中項求出公差,從而求出,再利用等比數列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【題目詳解】(1),且,,依次成等比數列,,即:,,,,,;(2),.【題目點撥】本題考查了等差數列、等比數列的通項公式、等比數列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.20、(1)沒有極值點;(2)證明見解析【解題分析】
(1)求導可得,再求導可得,則在遞增,則,從而在遞增,即可判斷;(2)轉化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設,則可整理為,設,利用導函數可得,即可求證.【題目詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數沒有極值點.(2)由題,,若存在實數,使直線與函數的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設,那么,所以,所以,即【題目點撥】本題考查利用導函數求函數的極值點,考查利用導函數解決雙變量問題,考查運算能力與推理論證能力.21、(1)見解析(2)【解題分析】
(1)根據菱形性質可知,結合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【題目詳解】(1)證明:設,連接,如下圖所示:∵側面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設平面的法向量為,則,即,∴可取,設平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【題目點撥】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時先證明三條兩兩垂直的直線,屬于中檔題.22、(1)0.024;(2)分布列見解析,;(3)【解題分析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數分布表和二級濾芯更換頻數條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年甘肅臨夏永靖縣招聘城鎮(zhèn)公益性崗位人員參考考試題庫及答案解析
- 2026西藏林芝米林市洋確贊布勞務有限責任公司招錄6人考試備考題庫及答案解析
- 2026年陜西觀瀾生態(tài)環(huán)境有限公司招聘(2人)考試備考題庫及答案解析
- 2022年工作參考總結節(jié)日期間安全工作參考總結三篇
- 2026江西贛南醫(yī)科大學第一附屬醫(yī)院國家級人才蔡菁菁教授團隊高層次人才招聘5人考試參考試題及答案解析
- 2026新疆機場集團天緣航旅有限責任公司財務部部長招聘1人備考題庫帶答案詳解
- 2026新疆綠翔供銷合作社聯(lián)合社有限責任公司招聘5人備考題庫帶答案詳解
- 2026年南平市建陽區(qū)緊缺急需學科教師專項招聘16人備考題庫及答案詳解一套
- 2026云南玉溪星峰建筑工程有限公司招聘4人備考題庫完整參考答案詳解
- 2026江西九江市八里湖新區(qū)國有企業(yè)招聘48人備考題庫及參考答案詳解一套
- 2025年司法鑒定人資格考試歷年真題試題及答案
- 江蘇省連云港市2024-2025學年第一學期期末調研考試高二歷史試題
- 生成式人工智能與初中歷史校本教研模式的融合與創(chuàng)新教學研究課題報告
- 2025年湖北煙草專賣局筆試試題及答案
- 文化館安全生產制度
- (2025年)保安員(初級)證考試題庫及答案
- 2026年浙江省軍士轉業(yè)崗位履職能力考點練習題及答案
- 2026年開工第一課復工復產安全專題培訓
- 特殊人群(老人、兒童)安全護理要點
- 2026年檢察院書記員面試題及答案
- 安全設備設施安裝、使用、檢驗、維修、改造、驗收、報廢管理制度
評論
0/150
提交評論