2024屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學(xué)高三第二輪復(fù)習(xí)測試卷數(shù)學(xué)試題(三)_第1頁
2024屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學(xué)高三第二輪復(fù)習(xí)測試卷數(shù)學(xué)試題(三)_第2頁
2024屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學(xué)高三第二輪復(fù)習(xí)測試卷數(shù)學(xué)試題(三)_第3頁
2024屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學(xué)高三第二輪復(fù)習(xí)測試卷數(shù)學(xué)試題(三)_第4頁
2024屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學(xué)高三第二輪復(fù)習(xí)測試卷數(shù)學(xué)試題(三)_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學(xué)高三第二輪復(fù)習(xí)測試卷數(shù)學(xué)試題(三)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.2.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.4.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.5.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.36.已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓于A,B兩點(diǎn),交y軸于點(diǎn)M,若、M是線段AB的三等分點(diǎn),則橢圓的離心率為()A. B. C. D.7.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.8.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.9.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個(gè)樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)10.若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點(diǎn)對稱 D.函數(shù)在上最大值是111.設(shè)集合,,則集合A. B. C. D.12.的展開式中的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線過雙曲線的一個(gè)焦點(diǎn),且與的一條對稱軸垂直,與交于兩點(diǎn),為的實(shí)軸長的2倍,則雙曲線的離心率為.14.已知數(shù)列是等比數(shù)列,,則__________.15.在如圖所示的三角形數(shù)陣中,用表示第行第個(gè)數(shù),已知,且當(dāng)時(shí),每行中的其他各數(shù)均等于其“肩膀”上的兩個(gè)數(shù)之和,即,若,則正整數(shù)的最小值為______.16.設(shè)為互不相等的正實(shí)數(shù),隨機(jī)變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動點(diǎn),周長的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.18.(12分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.20.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個(gè)可能的組合,并求數(shù)列的通項(xiàng)公式;(2)記(1)中您選擇的的前項(xiàng)和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.21.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.22.(10分)數(shù)列的前項(xiàng)和為,且.數(shù)列滿足,其前項(xiàng)和為.(1)求數(shù)列與的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【題目詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.【題目點(diǎn)撥】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.2、B【解題分析】命題p:,為,又為真命題的充分不必要條件為,故3、A【解題分析】

根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【題目詳解】由題可知,,,則解得,由可得,答案選A【題目點(diǎn)撥】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功4、A【解題分析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【題目詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【題目點(diǎn)撥】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.5、A【解題分析】

分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來求解.6、D【解題分析】

根據(jù)題意,求得的坐標(biāo),根據(jù)點(diǎn)在橢圓上,點(diǎn)的坐標(biāo)滿足橢圓方程,即可求得結(jié)果.【題目詳解】由已知可知,點(diǎn)為中點(diǎn),為中點(diǎn),故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點(diǎn)的坐標(biāo)為,則,易知點(diǎn)坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程得,所以離心率為,故選:D.【題目點(diǎn)撥】本題考查橢圓離心率的求解,難點(diǎn)在于根據(jù)題意求得點(diǎn)的坐標(biāo),屬中檔題.7、C【解題分析】

根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【題目詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)椋谶f增,所以的最大值.故選:C【題目點(diǎn)撥】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.8、B【解題分析】

采用排除法:通過判斷函數(shù)的奇偶性排除選項(xiàng)A;通過判斷特殊點(diǎn)的函數(shù)值符號排除選項(xiàng)D和選項(xiàng)C即可求解.【題目詳解】對于選項(xiàng)A:由題意知,函數(shù)的定義域?yàn)?,其關(guān)于原點(diǎn)對稱,因?yàn)?所以函數(shù)為奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,故選A排除;對于選項(xiàng)D:因?yàn)?故選項(xiàng)D排除;對于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;故選:B【題目點(diǎn)撥】本題考查利用函數(shù)的奇偶性和特殊點(diǎn)函數(shù)值符號判斷函數(shù)圖象;考查運(yùn)算求解能力和邏輯推理能力;選取合適的特殊點(diǎn)并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.9、D【解題分析】

對每一個(gè)選項(xiàng)逐一分析判斷得解.【題目詳解】回歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯(cuò)誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯(cuò)誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯(cuò)誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【題目點(diǎn)撥】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10、A【解題分析】

根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對稱,錯(cuò)誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯(cuò)誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯(cuò)誤.【題目詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時(shí),在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯(cuò)誤;當(dāng)時(shí),,關(guān)于點(diǎn)對稱,錯(cuò)誤;當(dāng)時(shí),此時(shí)沒有最大值,錯(cuò)誤.本題正確選項(xiàng):【題目點(diǎn)撥】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).11、B【解題分析】

先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【題目詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【題目點(diǎn)撥】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.12、C【解題分析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識與技能,屬于中低檔題,也是常考知識點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問題可得解.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

不妨設(shè)雙曲線,焦點(diǎn),令,由的長為實(shí)軸的二倍能夠推導(dǎo)出的離心率.【題目詳解】不妨設(shè)雙曲線,焦點(diǎn),對稱軸,由題設(shè)知,因?yàn)榈拈L為實(shí)軸的二倍,,,,故答案為.【題目點(diǎn)撥】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.14、【解題分析】

根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【題目詳解】設(shè)的公比為,由,得,故.故答案為:【題目點(diǎn)撥】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.15、2022【解題分析】

根據(jù)條件先求出數(shù)列的通項(xiàng),利用累加法進(jìn)行求解即可.【題目詳解】,,,下面求數(shù)列的通項(xiàng),由題意知,,,,,,數(shù)列是遞增數(shù)列,且,的最小值為.故答案為:.【題目點(diǎn)撥】本題主要考查歸納推理的應(yīng)用,結(jié)合數(shù)列的性質(zhì)求出數(shù)列的通項(xiàng)是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于難題.16、>【解題分析】

根據(jù)方差計(jì)算公式,計(jì)算出的表達(dá)式,由此利用差比較法,比較出兩者的大小關(guān)系.【題目詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實(shí)數(shù),故,也即,也即.故答案為:【題目點(diǎn)撥】本小題主要考查隨機(jī)變量期望和方差的計(jì)算,考查差比較法比較大小,考查運(yùn)算求解能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解題分析】

(Ⅰ)由橢圓的定義可得,周長取最大值時(shí),線段過點(diǎn),可求出,從而求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達(dá)定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點(diǎn)即得結(jié)論.【題目詳解】(Ⅰ)設(shè)的周長為,則,當(dāng)且僅當(dāng)線段過點(diǎn)時(shí)“”成立.,,又,,橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點(diǎn)矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時(shí).直線,聯(lián)立直線與直線的方程得,即點(diǎn)在定直線.【題目點(diǎn)撥】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的邏輯推理能力和運(yùn)算能力,屬于難題.18、(Ⅰ)詳見解析;(Ⅱ).【解題分析】

(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計(jì)算,再計(jì)算.【題目詳解】解:(Ⅰ)因?yàn)?,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因?yàn)?,,,所以,從?【題目點(diǎn)撥】本題考查了面面垂直的判定,考查直線與平面所成角的計(jì)算,屬于中檔題.19、(1)見解析(2)見解析【解題分析】

(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【題目詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD

;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【題目點(diǎn)撥】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來證明,直線與直線垂直通常利用線面垂直來進(jìn)行證明,側(cè)重考查邏輯推理的核心素養(yǎng).20、(1)見解析,或;(2)存在,.【解題分析】

(1)滿足題意有兩種組合:①,,,②,,,分別計(jì)算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【題目詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.②,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.(2)若選擇①,.則.若,,成等比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論