版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省師范大學附屬中學2024屆高三第一次十校聯(lián)考數(shù)學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或2.若平面向量,滿足,則的最大值為()A. B. C. D.3.如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1084.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.5.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.6.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變7.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為()A. B. C. D.8.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機爬行,則在離三個頂點距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.9.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.10.已知,其中是虛數(shù)單位,則對應的點的坐標為()A. B. C. D.11.已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是()A. B. C. D.12.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.15.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.16.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點的橫坐標;②當?shù)膬?nèi)切圓的面積為時,求直線的方程.18.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.19.(12分)已知函數(shù).(Ⅰ)當時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.20.(12分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.22.(10分)在△ABC中,分別為三個內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
根據(jù)正弦定理得到,化簡得到答案.【題目詳解】由,得,∴,∴或,∴或.故選:【題目點撥】本題考查了正弦定理解三角形,意在考查學生的計算能力.2、C【解題分析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【題目詳解】由題意可得:,,,故選:C【題目點撥】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關(guān)鍵點.本題屬中檔題.3、B【解題分析】
根據(jù)幾何概型的概率公式求出對應面積之比即可得到結(jié)論.【題目詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【題目點撥】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關(guān)鍵.4、A【解題分析】
由題意可知直線過定點即為圓心,由此得到坐標的關(guān)系,再根據(jù)點差法得到直線的斜率與坐標的關(guān)系,由此化簡并求解出離心率的取值范圍.【題目詳解】設(shè),且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【題目點撥】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設(shè)而不求”的目的,大大簡化運算.5、C【解題分析】
由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當時,不滿足條件,跳出循環(huán),輸出的值.【題目詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【題目點撥】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.6、C【解題分析】
根據(jù)線面平行與垂直的判定與性質(zhì)逐個分析即可.【題目詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【題目點撥】本題考查直線與平面的位置關(guān)系.屬于中檔題.7、D【解題分析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【題目詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.【題目點撥】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.8、A【解題分析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【題目詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【題目點撥】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.9、B【解題分析】
由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對值不等式求得結(jié)果.【題目詳解】由題意知:定義域為,,為偶函數(shù),當時,,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【題目點撥】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進而化簡不等式.10、C【解題分析】
利用復數(shù)相等的條件求得,,則答案可求.【題目詳解】由,得,.對應的點的坐標為,,.故選:.【題目點撥】本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)相等的條件,是基礎(chǔ)題.11、D【解題分析】
將函數(shù)的零點個數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結(jié)合,即可求解.【題目詳解】由圖知與有個公共點即可,即,當設(shè)切點,則,.故選:D.【題目點撥】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.12、B【解題分析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【題目詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因為,是銳角三角形的兩個內(nèi)角,所以且即,所以即,.故選:.【題目點撥】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
在不等式兩邊同時取對數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【題目詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【題目點撥】本題考查函數(shù)單調(diào)性與導數(shù)之間的應用,根據(jù)條件利用取對數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵14、【解題分析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【題目詳解】原問題等價于,當時,函數(shù)圖象如圖此時,則,解得:;當時,函數(shù)圖象如圖此時,則,解得:;當時,函數(shù)圖象如圖此時,則,解得:;當時,函數(shù)圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【題目點撥】本題主要考查了對勾函數(shù)的圖象與性質(zhì),函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉(zhuǎn)化與化歸的思想.15、【解題分析】
根據(jù)條件及向量數(shù)量積運算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【題目詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當時,取得最小值因而故答案為:【題目點撥】本題考查了平面向量數(shù)量積的綜合應用,向量的線性運算及模的求法,二次函數(shù)最值的應用,屬于中檔題.16、【解題分析】
求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【題目詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【題目點撥】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)①;②.【解題分析】
(1)設(shè)過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設(shè)出直線方程,求出交點坐標,因為內(nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【題目詳解】(1)設(shè)過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯(lián)立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【題目點撥】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學生的運算求解與邏輯推理能力.18、(1)(2)【解題分析】
(1)先證得,設(shè)與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【題目詳解】(1)由題意,,設(shè)與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【題目點撥】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【題目詳解】(Ⅰ)當時,,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;(Ⅱ)因為函數(shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實數(shù)的取值范圍.【題目點撥】本題主要考查了利用對數(shù)函數(shù)的單調(diào)性求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年竹溪縣民政局關(guān)于公辦養(yǎng)老機構(gòu)招聘消防設(shè)施操作員的備考題庫及參考答案詳解1套
- 湖北中考歷史三年(2023-2025)真題分類匯編專題06 綜合題(解析版)
- 2026年泰和縣人民法院公開招聘聘任制司法輔助人員備考題庫完整參考答案詳解
- 2025-2030中國膳食纖維行業(yè)運行現(xiàn)狀及發(fā)展趨勢分析研究報告
- 2025至2030中國職業(yè)教育培訓市場需求變化與商業(yè)模式分析報告
- 機關(guān)培訓教學
- 2025至2030中國智能電網(wǎng)行業(yè)市場現(xiàn)狀供需分析及投資政策支持研究報告
- 智慧農(nóng)業(yè)技術(shù)推廣障礙及解決方案與投資可行性分析
- 2025-2030中醫(yī)藥產(chǎn)業(yè)發(fā)展特點分析與現(xiàn)代技術(shù)融合路徑探索及中藥材標準化體系建設(shè)研究
- 2026年昭通市永善縣緊密型醫(yī)共體溪洛渡街道衛(wèi)生院分院招聘9人備考題庫有答案詳解
- 反制無人機課件
- 光伏項目后期運營維護管理方案
- 材料作文(原卷版)-2026年中考語文復習試題(浙江專用)
- 衰老標志物人工智能數(shù)據(jù)模型建立應用指南
- 2025至2030中國球囊膽管導管行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 生物樣本資源庫建設(shè)計劃及管理工作方案
- 消防安全管理人責任書范文
- 光伏電站安全事故案例
- 重癥肺炎患者護理要點回顧查房
- 住院醫(yī)師規(guī)范化培訓階段考核(年度考核、出科考核)
- 學堂在線 雨課堂 學堂云 中國建筑史-元明清與民居 期末考試答案
評論
0/150
提交評論