版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024年浙江省金華市方格外國(guó)語(yǔ)學(xué)校高三上數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.2.已知是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.3.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無(wú)數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行4.以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿(mǎn)足線性回歸方程”是“,”的充要條件;其中真命題的個(gè)數(shù)為()A.4 B.3 C.2 D.15.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.6.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿(mǎn)足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.97.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知函數(shù),若,則a的取值范圍為()A. B. C. D.9.已知展開(kāi)式的二項(xiàng)式系數(shù)和與展開(kāi)式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.8010.已知復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.11.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.12.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為_(kāi)_______.14.過(guò)直線上一動(dòng)點(diǎn)向圓引兩條切線MA,MB,切點(diǎn)為A,B,若,則四邊形MACB的最小面積的概率為_(kāi)_______.15.已知拋物線的焦點(diǎn)為,斜率為的直線過(guò)且與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),若在第一象限,那么_______________.16.已知的展開(kāi)式中含有的項(xiàng)的系數(shù)是,則展開(kāi)式中各項(xiàng)系數(shù)和為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.18.(12分)已知,,.(1)求的最小值;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.19.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.20.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時(shí)間,對(duì)每個(gè)工人組裝一個(gè)該產(chǎn)品的用時(shí)作了記錄,得到大量統(tǒng)計(jì)數(shù)據(jù).從這些統(tǒng)計(jì)數(shù)據(jù)中隨機(jī)抽取了個(gè)數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時(shí)不超過(guò)(分鐘),則稱(chēng)這個(gè)工人為優(yōu)秀員工.(1)求這個(gè)樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個(gè)樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.21.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).22.(10分)已知圓O經(jīng)過(guò)橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過(guò)分裂參數(shù)法和構(gòu)造新函數(shù),通過(guò)利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來(lái)求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.2、C【解析】
如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.3、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無(wú)數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿(mǎn)足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.4、C【解析】
①根據(jù)線性相關(guān)性與r的關(guān)系進(jìn)行判斷,
②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進(jìn)行判斷,
③根據(jù)方差關(guān)系進(jìn)行判斷,
④根據(jù)點(diǎn)滿(mǎn)足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),而回歸直線必過(guò)樣本中心點(diǎn),可進(jìn)行判斷.【詳解】①若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故①正確;
②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯(cuò)誤;
③若統(tǒng)計(jì)數(shù)據(jù)的方差為1,則的方差為,故③正確;
④因?yàn)辄c(diǎn)滿(mǎn)足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),即,不一定成立,而回歸直線必過(guò)樣本中心點(diǎn),所以當(dāng),時(shí),點(diǎn)必滿(mǎn)足線性回歸方程;因此“滿(mǎn)足線性回歸方程”是“,”必要不充分條件.故④錯(cuò)誤;
所以正確的命題有①③.
故選:C.【點(diǎn)睛】本題考查兩個(gè)隨機(jī)變量的相關(guān)性,擬合性檢驗(yàn),兩個(gè)線性相關(guān)的變量間的方差的關(guān)系,以及兩個(gè)變量的線性回歸方程,注意理解每一個(gè)量的定義,屬于基礎(chǔ)題.5、C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿(mǎn)足條件,,,,,滿(mǎn)足條件,,,,,滿(mǎn)足條件,,,,,滿(mǎn)足條件,,,,,不滿(mǎn)足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡(jiǎn)單題.6、A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.7、B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問(wèn)題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.8、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.9、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開(kāi)式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.10、A【解析】
由復(fù)數(shù)的運(yùn)算法則計(jì)算.【詳解】因?yàn)椋怨蔬x:A.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算.屬于簡(jiǎn)單題.11、A【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn),由于為純虛數(shù),則化簡(jiǎn)后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡(jiǎn)單題.12、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由程序中的變量、各語(yǔ)句的作用,結(jié)合流程圖所給的順序,模擬程序的運(yùn)行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿(mǎn)足條件,執(zhí)行循環(huán)體,,此時(shí),滿(mǎn)足條件,退出循環(huán),輸出的值為.故答案為:【點(diǎn)睛】本題主要考查了程序和算法,依次寫(xiě)出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識(shí)的考查.14、.【解析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長(zhǎng)的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時(shí)最小為圓心到直線的距離,此時(shí),因?yàn)?,所以,所以的概率為.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,及與長(zhǎng)度有關(guān)的幾何概型,考查了學(xué)生分析問(wèn)題的能力,難度一般.15、2【解析】
如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因?yàn)?所以,過(guò)點(diǎn)A、B分別作準(zhǔn)線的垂線,垂足分別為M,N,過(guò)點(diǎn)B作于點(diǎn)E,設(shè)|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因?yàn)?所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,考查拋物線的定義,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、1【解析】
由二項(xiàng)式定理及展開(kāi)式通項(xiàng)公式得:,解得,令得:展開(kāi)式中各項(xiàng)系數(shù)和,得解.【詳解】解:由的展開(kāi)式的通項(xiàng),令,得含有的項(xiàng)的系數(shù)是,解得,令得:展開(kāi)式中各項(xiàng)系數(shù)和為,故答案為:1.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開(kāi)式通項(xiàng)公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過(guò)點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對(duì)應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.18、(1)2;(2).【解析】
(1)化簡(jiǎn)得,所以,展開(kāi)后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對(duì)值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時(shí),.(2)由(1)知,,對(duì)任意,都有,∴,即.①當(dāng)時(shí),有,解得;②當(dāng),時(shí),有,解得;③當(dāng)時(shí),有,解得;綜上,,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用和求解含絕對(duì)值的不等式,考查學(xué)生的分類(lèi)思想和計(jì)算能力,屬于中檔題.19、(1)證明見(jiàn)解析(2)45°【解析】
(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過(guò)B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點(diǎn)睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進(jìn)行求解.20、(1)43,47;(2)分布列見(jiàn)解析,.【解析】
(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫(xiě)出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點(diǎn)睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機(jī)變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準(zhǔn)確求解概率,若能準(zhǔn)確識(shí)別二項(xiàng)分布對(duì)于解題能夠起到事半功倍的作用.21、(1);(2).【解析】
(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡(jiǎn)求得結(jié)果;(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理費(fèi)收繳與服務(wù)指南(標(biāo)準(zhǔn)版)
- 2024年金陽(yáng)縣輔警招聘考試真題附答案
- 2024年莒縣選聘縣直事業(yè)單位工作人員歷年真題附答案
- 2025北京大興區(qū)安定鎮(zhèn)人民政府委托補(bǔ)充招聘臨時(shí)輔助用工人員及其他編外用工人員9人備考題庫(kù)附答案
- 2025寧夏回族自治區(qū)公務(wù)員考試《公共基礎(chǔ)知識(shí)》題庫(kù)附答案
- 2025山西運(yùn)城市鹽湖區(qū)從社區(qū)專(zhuān)職網(wǎng)格員中選聘社區(qū)專(zhuān)職工作人員240人備考題庫(kù)附答案
- 2024年海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試參考題庫(kù)附答案
- 2024年福建生物工程職業(yè)技術(shù)學(xué)院輔導(dǎo)員考試參考題庫(kù)附答案
- 2024年貴陽(yáng)信息科技學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 2024年長(zhǎng)春市建筑職工業(yè)余大學(xué)輔導(dǎo)員招聘?jìng)淇碱}庫(kù)附答案
- 2026年重慶市江津區(qū)社區(qū)專(zhuān)職人員招聘(642人)筆試備考試題及答案解析
- 2026年思明區(qū)公開(kāi)招聘社區(qū)工作者考試備考題庫(kù)及完整答案詳解1套
- 【四年級(jí)】【數(shù)學(xué)】【秋季上】期末家長(zhǎng)會(huì):數(shù)海引航愛(ài)伴成長(zhǎng)【課件】
- 小學(xué)音樂(lè)教師年度述職報(bào)告范本
- 設(shè)備設(shè)施風(fēng)險(xiǎn)分級(jí)管控清單
- 河南交通職業(yè)技術(shù)學(xué)院教師招聘考試歷年真題
- 污水管網(wǎng)工程監(jiān)理規(guī)劃修改
- (機(jī)構(gòu)動(dòng)態(tài)仿真設(shè)計(jì))adams
- 北京市社保信息化發(fā)展評(píng)估研究報(bào)告
- GB/T 8336-2011氣瓶專(zhuān)用螺紋量規(guī)
- GB/T 1048-2019管道元件公稱(chēng)壓力的定義和選用
評(píng)論
0/150
提交評(píng)論