2023-2024學年陜師大附中數學九上期末檢測試題含解析_第1頁
2023-2024學年陜師大附中數學九上期末檢測試題含解析_第2頁
2023-2024學年陜師大附中數學九上期末檢測試題含解析_第3頁
2023-2024學年陜師大附中數學九上期末檢測試題含解析_第4頁
2023-2024學年陜師大附中數學九上期末檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年陜師大附中數學九上期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.二次根式中,的取值范圍是()A. B. C. D.2.函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣23.某校數學課外小組,在坐標紙上為某濕地公園的一塊空地設計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負實數a的整數部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵樹種植點的坐標應為()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)4.在同一時刻,兩根長度不等的竿子置于陽光之下,而它們的影長相等,那么這兩根竿子的相對位置是()A.兩根都垂直于地面 B.兩根平行斜插在地上 C.兩根不平行 D.兩根平行倒在地上5.如圖,平行于BC的直線DE把△ABC分成的兩部分面積相等,則為()A. B. C. D.6.下列各式中,均不為,和成反比例關系的是()A. B. C. D.7.用配方法將二次函數y=x2﹣8x﹣9化為y=a(x﹣h)2+k的形式為()A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣258.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE9.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.10.下列調查中,最適合采用普查方式的是()A.對學校某班學生數學作業(yè)量的調查B.對國慶期間來山西的游客滿意度的調查C.對全國中學生手機使用時間情況的調查D.環(huán)保部廣對汾河水質情況的調查11.如圖,在△ABC與△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,連接BD、CE,若AC︰BC=3︰4,則BD︰CE為()A.5︰3 B.4︰3 C.︰2 D.2︰12.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).其中正確的結論有()A.2個 B.3個 C.4個 D.5個二、填空題(每題4分,共24分)13.已知二次函數y=ax2+bx+c的圖象如圖所示,則a_____1,b_____1,c_____1.14.分式方程的解是__________.15.若是一元二次方程的兩個根,則=___________.16.設x1,x2是一元二次方程7x2﹣5=x+8的兩個根,則x1+x2的值是_____.17.如圖,在直角坐標系中,正方形ABCD的邊BC在x軸上,其中點A的坐標為(1,2),正方形EFGH的邊FG在x軸上,且H的坐標為(9,4),則正方形ABCD與正方形EFGH的位似中心的坐標是_____.18.在中,,,,則內切圓的半徑是__________.三、解答題(共78分)19.(8分)如圖,已知四邊形ABCD內接于⊙O,A是的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F,E,且.(1)求證:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.20.(8分)將一元二次方程化為一般形式,并求出根的判別式的值.21.(8分)如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點,O為坐標原點.(1)求點A和B的坐標;(2)連結OA,OB,求△OAB的面積.22.(10分)我市某童裝專賣店在銷售中發(fā)現,一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當的降價措施,以擴大銷售量,經市場調查發(fā)現,如果每件童裝降價1元,那么平均可多售出2件設每件童裝降價x元時,平均每天可盈利y元.寫出y與x的函數關系式;當該專賣店每件童裝降價多少元時,平均每天盈利400元?該專賣店要想平均每天盈利600元,可能嗎?請說明理由.23.(10分)某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價不低于成本,且不高于70元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數關系,部分數據如下表:售價x(元/千克)405060銷售量y(千克)1008060(1)求y與x之間的函數表達式;(2)設商品每天的總利潤為W(元),求W與x之間的函數表達式(利潤=收入?成本);(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?24.(10分)如圖,內接于,是的直徑,是上一點,弦交于點,弦于點,連接,,且.(1)求證:;(2)若,,求的長.25.(12分)定義:若一個四邊形能被其中一條對角線分割成兩個相似三角形,則稱這個四邊形為“友好四邊形”.(1)如圖1,在的正方形網格中,有一個網格和兩個網格四邊形與,其中是被分割成的“友好四邊形”的是;(2)如圖2,將繞點逆時針旋轉得到,點落在邊,過點作交的延長線于點,求證:四邊形是“友好四邊形”;(3)如圖3,在中,,,的面積為,點是的平分線上一點,連接,.若四邊形是被分割成的“友好四邊形”,求的長.26.如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第三象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.

參考答案一、選擇題(每題4分,共48分)1、A【解析】根據二次根式有意義的條件:被開方數為非負數解答即可.【詳解】∵是二次根式,∴x-3≥0,解得x≥3.故選A.【點睛】本題考查了二次根式有意義的條件.熟記二次根式的被開方數是非負數是解題關鍵.2、C【分析】根據函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數與x軸有一個交點,當m≠0時,函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數學思想解答.3、D【分析】根據已知分別求出1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點的坐標特點,進而求解.【詳解】解:由題可知1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通過以上數據可得,P點的縱坐標5個一組循環(huán),∵2119÷5=413…4,∴當k=2119時,P點的縱坐標是4,橫坐標是413+1=414,∴P(414,4),故選:D.【點睛】本題考查點的坐標和探索規(guī)律;能夠理解題意,通過已知條件探索點的坐標循環(huán)規(guī)律是解題的關鍵.4、C【分析】在不同時刻,同一物體的影子方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在變,依此進行分析.【詳解】在同一時刻,兩根竿子置于陽光下,但看到他們的影長相等,那么這兩根竿子的頂部到地面的垂直距離相等,而竿子長度不等,故兩根竿子不平行,故答案選擇C.【點睛】本題考查投影的相關知識,解決此題的關鍵是掌握平行投影的特點.5、D【分析】先證明△ADE∽△ABC,然后根據相似三角形的面積的比等于相似比的平方求解即可.【詳解】∵BC∥DE,∴△ADE∽△ABC,∵DE把△ABC分成的兩部分面積相等,∴△ADE:△ABC=1:2,∴.故選D.【點睛】本題主要考查了相似三角形的判定與性質,平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構成的三角形與原三角形相似;相似三角形面積的比等于相似比的平方.6、B【分析】判斷兩個相關聯的量之間成什么比例,就看這兩個量是對應的比值一定,還是對應的乘積一定;如果是比值一定,就成正比例;如果是乘積一定,則成反比例.【詳解】解:A.,則,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故選B.【點睛】此題屬于根據正、反比例的意義,辨識兩種相關聯的量是否成反比例,就看這兩種量是否是對應的乘積一定,再做出選擇.7、C【分析】直接利用配方法進而將原式變形得出答案.【詳解】y=x2-8x-9=x2-8x+16-1=(x-4)2-1.故選C.【點睛】此題主要考查了二次函數的三種形式,正確配方是解題關鍵.8、C【分析】根據相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.9、C【分析】根據軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內,一個圖形經過中心對稱能與原來的圖形重合,這個圖形叫做叫做中心對稱圖形.一個圖形的一部分,以某條直線為對稱軸,經過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A.既是中心對稱圖形,也是軸對稱圖形,故不符合題意;B.既是中心對稱圖形,也是軸對稱圖形,故不符合題意;C.是中心對稱圖形,但不是軸對稱圖形,故符合題意;D.不是中心對稱圖形,是軸對稱圖形,故不符合題意;故選C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.10、A【分析】根據全面調查與抽樣調查的特點對四個選項進行判斷.【詳解】解:A.對學校某班學生數學作業(yè)量的調查,適合采用普查方式,故正確;B.對國慶期間來山西的游客滿意度的調查,適合采用抽樣調查,故此選項錯誤;C.對全國中學生手機使用時間情況的調查,適合采用抽樣調查,故此選項錯誤;D.環(huán)保部廣]對汾河水質情況的調查,適合采用抽樣調查,故此選項錯誤;故選:A.【點睛】本題考查了全面調查與抽樣調查:如何選擇調查方法要根據具體情況而定.一般來講:通過普查可以直接得到較為全面、可靠的信息,但花費的時間較長,耗費大,且一些調查項目并不適合普查.其二,調查過程帶有破壞性.如:調查一批燈泡的使用壽命就只能采取抽樣調查,而不能將整批燈泡全部用于實驗.其三,有些被調查的對象無法進行普查.11、A【解析】因為∠ACB=90°,AC︰BC=3︰4,則因為∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,則,.故選A.12、A【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;當x=﹣1時圖象在x軸上得到y(tǒng)=a﹣b+c=0,即a+c=b;對稱軸為直線x=1,可得x=2時圖象在x軸上方,則y=4a+2b+c>0;利用對稱軸x=﹣=1得到a=﹣b,而a﹣b+c<0,則﹣b﹣b+c<0,所以2c<3b;開口向下,當x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【詳解】解:開口向下,a<0;對稱軸在y軸的右側,a、b異號,則b>0;拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確;當x=﹣1時圖象在x軸上,則y=a﹣b+c=0,即a+c=b,所以②不正確;對稱軸為直線x=1,則x=2時圖象在x軸上方,則y=4a+2b+c>0,所以③正確;x=﹣=1,則a=﹣b,而a﹣b+c=0,則﹣b﹣b+c=0,2c=3b,所以④不正確;開口向下,當x=1,y有最大值a+b+c;當x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正確.故選:A.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.二、填空題(每題4分,共24分)13、<<>【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】解:由拋物線的開口方向向下可推出a<1;因為對稱軸在y軸左側,對稱軸為x=<1,又因為a<1,∴b<1;由拋物線與y軸的交點在y軸的正半軸上,∴c>1.【點睛】本題考查了二次函數的圖象和性質,屬于簡單題,熟悉二次函數的圖象是解題關鍵.14、【分析】等式兩邊同時乘以,再移項即可求解.【詳解】等式兩邊同時乘以得:移項得:,經檢驗,x=2是方程的解.故答案為:.【點睛】本題考查了解分式方程的問題,掌握解分式方程的方法是解題的關鍵.15、1【分析】根據韋達定理可得,,將整理得到,代入即可.【詳解】解:∵是一元二次方程的兩個根,∴,,∴,故答案為:1.【點睛】本題考查韋達定理,掌握,是解題的關鍵.16、【解析】把方程化為一般形式,利用根與系數的關系直接求解即可.【詳解】把方程7x2-5=x+8化為一般形式可得7x2-x-13=0,

∵x1,x2是一元二次方程7x2-5=x+8的兩個根,

∴x1+x2=.故答案是:.【點睛】主要考查根與系數的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.17、(﹣3,0)或(,)【分析】連接HD并延長交x軸于點P,根據正方形的性質求出點D的坐標為(3,2),證明△PCD∽△PGH,根據相似三角形的性質求出OP,另一種情況,連接CE、DF交于點P,根據待定系數法分別求出直線DF解析式和直線CE解析式,求出兩直線交點,得到答案.【詳解】解:連接HD并延長交x軸于點P,則點P為位似中心,∵四邊形ABCD為正方形,點A的坐標為(1,2),∴點D的坐標為(3,2),∵DC//HG,∴△PCD∽△PGH,∴,即,解得,OP=3,∴正方形ABCD與正方形EFGH的位似中心的坐標是(﹣3,0),連接CE、DF交于點P,由題意得C(3,0),E(5,4),D(3,2),F(5,0),求出直線DF解析式為:y=﹣x+5,直線CE解析式為:y=2x﹣6,解得直線DF,CE的交點P為(,),所以正方形ABCD與正方形EFGH的位似中心的坐標是(,),故答案為:(﹣3,0)或(,).【點睛】本題考查的是位似變換的概念和性質、相似三角形的判定和性質,位似圖形的定義:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.18、1【分析】先根據勾股定理求出斜邊AB的長,然后根據直角三角形內切圓的半徑公式:(其中a、b為直角三角形的直角邊、c為直角三角形的斜邊)計算即可.【詳解】解:在中,,,,根據勾股定理可得:∴內切圓的半徑是故答案為:1.【點睛】此題考查的是求直角三角形內切圓的半徑,掌握直角三角形內切圓的半徑公式:(其中a、b為直角三角形的直角邊、c為直角三角形的斜邊)是解決此題的關鍵.三、解答題(共78分)19、(1)詳見解析;(2).【分析】(1)欲證△ADC∽△EBA,只要證明兩個角對應相等就可以.可以轉化為證明且就可以;(2)A是的中點,的中點,則AC=AB=8,根據△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根據正切三角函數的定義就可以求出結論.【詳解】(1)證明:∵四邊形ABCD內接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是的中點,∴,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.考點:相似三角形的判定與性質;圓周角定理.20、,-8【分析】先移項,將方程化為一般式,然后算判別式的大小可得.【詳解】解:將方程化為一般形式為:∴a=3,b=-2,c=1∴根的判別式的值為.【點睛】本題考查一元二次方程的化簡和求解判別式,注意此題的判別式為負數,即表示方程無實數根.21、(1)A(1,1),B(-3,9);(2)6.【分析】(1)將直線與拋物線聯立解方程組,即可求出交點坐標;(2)過點A與點B分別作AA1、BB1垂直于x軸,由圖形可得△OAB的面積可用梯形AA1B1B的面積減去△OBB1的面積,再減去△OAA1得到.【詳解】(1)∵直線y=-2x+3與拋物線y=x2相交,∴將直線與拋物線聯立得,解得或,∴A(1,1),B(-3,9);(2)過點A與點B分別作AA1、BB1垂直于x軸,如下圖所示,由A、B的坐標可知AA1=1,BB1=9,OB1=3,OA1=1,A1B1=4,梯形AA1B1B的面積=,△OBB1的面積=,△OAA1的面積=,∴△OAB的面積=.故答案為6.【點睛】本題考查了求一次函數與二次函數的交點和坐標系中三角形的面積計算,求函數圖像交點,就是將兩個函數聯立解方程組,坐標系中不規(guī)則圖形的面積通常采用割補法計算.22、(1);(2)10元:(3)不可能,理由見解析【解析】根據總利潤每件利潤銷售數量,可得y與x的函數關系式;根據中的函數關系列方程,解方程即可求解;根據中相等關系列方程,判斷方程有無實數根即可得.【詳解】解:根據題意得,y與x的函數關系式為;當時,,解得,不合題意舍去.答:當該專賣店每件童裝降價10元時,平均每天盈利400元;該專賣店不可能平均每天盈利600元.當時,,整理得,,方程沒有實數根,答:該專賣店不可能平均每天盈利600元.【點睛】本題主要考查二次函數的應用、一元二次方程的實際應用,理解題意找到題目蘊含的等量關系是列方程求解的關鍵.23、(1)y=﹣2x+180;(2)W=﹣2x2+240x﹣5400;(3)當x=60時,W取得最大值,此時W=1.【分析】(1)待定系數法求解可得;(2)根據“總利潤=每千克利潤×銷售量”可得函數解析式;(3)將所得函數解析式配方成頂點式即可得最值情況.【詳解】(1)設y與x之間的函數解析式為y=kx+b,則,解得k=-2,b=180.即y與x之間的函數表達式是y=﹣2x+180;(2)由題意可得,W=(x﹣30)(﹣2x+180)=﹣2x2+240x﹣5400,即W與x之間的函數表達式是W=﹣2x2+240x﹣5400;(3)∵W=﹣2x2+240x﹣5400=﹣2(x﹣60)2+1,30≤x≤70,∴當30≤x≤60時,W隨x的增大而增大;當60≤x≤70時,W隨x的增大而減小;當x=60時,W取得最大值,此時W=1.【點睛】考查二次函數的應用,解題的關鍵是熟練掌握待定系數法求函數解析式及二次函數的性質.24、(1)詳見解析;(2)【分析】(1)證法一:連接,利用圓周角定理得到,從而證明,然后利用同弧所對的圓周角相等及三角形外角的性質得到,從而使問題得解;證法二:連接,,由圓周角定理得到,從而判定,得到,然后利用圓內接四邊形對角互補可得,從而求得,使問題得解;(2)首先利用勾股定理和三角形面積求得AG的長,解法一:過點作于點,利用勾股定理求GH,CH,CD的長;解法二:過點作于點,利用AA定理判定,然后根據相似三角形的性質列比例式求解.【詳解】(1)證法一:連接.∵為的直徑,∴,∴∵,∴∴∴.∵∴∵,∴∴.證法二:連接,.∵為的直徑,∴∵∴∴,∴∴∵∴∵∴∴∴∵四邊形內接于,∴∴∴∴.(2)解:在中,,,,根據勾股定理得.連接,∵為的直徑,∴∴∴∵∴∵∴∴∴四邊形是平行四邊形.∴.在中,,∴解法一:過點作于點∴在中,,∴在中,∴在中,∴解法二:過點作于點∴∵∴∵∴四邊形為矩形∴.∵四邊形為平行四邊形,∴∴.∵,∴∴即∴【點睛】本題考查圓的綜合知識,相似三角形的判定和性質,勾股定理解直角三角形,綜合性較強,有一定難度.25、(1)四邊形;(2)詳見解析;(3)【分析】(1)根據三角形相似的判定定理,得?ABC~?EAC,進而即可得到答案;(2)由旋轉的性質得,,,結合,得,進而即可得到結論;(3)過點作于,得,根據三角形的面積得,結合∽,即可得到答案.【詳解】(1)由題意得:,∴,∴?ABC~?EAC,∴被分割成的“友好四邊形”的是:四邊形,故答案是:四邊形;(2)根據旋轉的性質得,,,∵,∴,∴,∴∽,∴四邊形是“友好四邊形”;(3)過點作于,∴在中,,∵的面積為,∴,∴,∵四邊形是被分割成的“友好四邊形”,且,∴∽,∴,∴,∴.【點睛】本題主要考查相似三角形的判定和性質定理以及三角函數的定義,掌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論