2024屆河南省洛陽市東方第二中學數(shù)學九年級第一學期期末經典試題含解析_第1頁
2024屆河南省洛陽市東方第二中學數(shù)學九年級第一學期期末經典試題含解析_第2頁
2024屆河南省洛陽市東方第二中學數(shù)學九年級第一學期期末經典試題含解析_第3頁
2024屆河南省洛陽市東方第二中學數(shù)學九年級第一學期期末經典試題含解析_第4頁
2024屆河南省洛陽市東方第二中學數(shù)學九年級第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省洛陽市東方第二中學數(shù)學九年級第一學期期末經典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,AE⊥EF.有下列結論:①∠BAE=30°;②射線FE是∠AFC的角平分線;③CF=CD;④AF=AB+CF.其中正確結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個2.如圖,已知一組平行線a∥b∥c,被直線m、n所截,交點分別為A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,則EF=()A.4.4 B.4 C.3.4 D.2.43.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點的兩個角是對頂角 D.等腰三角形兩底角相等4.下列事件中,屬于必然事件的是()A.明天太陽從北邊升起 B.實心鉛球投入水中會下沉C.籃球隊員在罰球線投籃一次,投中 D.拋出一枚硬幣,落地后正面向上5.如圖是由五個相同的小立方塊搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.6.如圖,把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個正方形,如果所剪得的兩個正方形邊長都是1,那么圓形紙片和扇形紙片的面積比是()A.4:5 B.2:5 C.:2 D.:7.如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34° B.46° C.56° D.66°8.如圖,是正方形的外接圓,點是上的一點,則的度數(shù)是()A. B.C. D.9.如圖,舞臺縱深為6米,要想獲得最佳音響效果,主持人應站在舞臺縱深所在線段的離舞臺前沿較近的黃金分割點處,那么主持人站立的位置離舞臺前沿較近的距離約為()A.1.1米 B.1.5米 C.1.9米 D.2.3米10.經過兩年時間,我市的污水利用率提高了.設這兩年污水利用率的平均增長率是,則列出的關于的一元二次方程為()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在中,A,B,C是上三點,如果,那么的度數(shù)為________.12.若2是一元二次方程x2+mx﹣4m=0的一個根,則另一個根是_________.13.在平面直角坐標系中,拋物線y=x2如圖所示,已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4,過點A4作A4A5∥x軸交拋物線于點A5,則點A5的坐標為_____.14.在Rt△ABC中,∠C=90°,如果cosB=,BC=4,那么AB的長為________.15.如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG,點F,G分別在AD,BC上,連結OG,DG,若OG⊥DG,且⊙O的半徑長為1,則BC+AB的值______.16.在上午的某一時刻身高1.7米的小剛在地面上的影長為3.4米,同時一棵樹在地面上的影子長12米,則樹的高度為_____米.17.將二次函數(shù)y=2x2的圖像沿x軸向左平移2個單位,再向下平移3個單位后,所得函數(shù)圖像的函數(shù)關系式為______________.18.若x=是一元二次方程的一個根,則n的值為____.三、解答題(共66分)19.(10分)某賓館有客房間供游客居住,當每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設每間客房每天的定價增加元,賓館出租的客房為間.求:關于的函數(shù)關系式;如果某天賓館客房收入元,那么這天每間客房的價格是多少元?20.(6分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應的函數(shù)表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內,A、N是位于直線BM同側的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.21.(6分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于,點兩點,交軸于點.(1)求、的值.(2)請根據(jù)圖象直接寫出不等式的解集.(3)軸上是否存在一點,使得以、、三點為頂點的三角形是為腰的等腰三角形,若存在,請直接寫出符合條件的點的坐標,若不存在,請說明理由.22.(8分)如圖,在平面直角坐標系xOy中,曲線經過點A.(1)求曲線的表達式;(2)直線y=ax+3(a≠0)與曲線圍成的封閉區(qū)域為圖象G.①當時,直接寫出圖象G上的整數(shù)點個數(shù)是;(注:橫,縱坐標均為整數(shù)的點稱為整點,圖象G包含邊界.)②當圖象G內只有3個整數(shù)點時,直接寫出a的取值范圍.23.(8分)如圖,在四邊形中,將繞點順時針旋轉一定角度后,點的對應點恰好與點重合,得到.(1)求證:;(2)若,試求四邊形的對角線的長.24.(8分)問題提出:如圖所示,有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.a.每次只能移動1個金屬片;b.較大的金屬片不能放在較小的金屬片上面.把個金屬片從1號針移到3號針,最少移動多少次?問題探究:為了探究規(guī)律,我們采用一般問題特殊化的方法,先從簡單的情形入手,再逐次遞進,最后得出一般性結論.探究一:當時,只需把金屬片從1號針移到3號針,用符號表示,共移動了1次.探究二:當時,為了避免將較大的金屬片放在較小的金屬片上面,我們利用2號針作為“中間針”,移動的順序是:a.把第1個金屬片從1號針移到2號針;b.把第2個金屬片從1號針移到3號針;c.把第1個金屬片從2號針移到3號針.用符號表示為:,,.共移動了3次.探究三:當時,把上面兩個金屬片作為一個整體,則歸結為的情形,移動的順序是:a.把上面兩個金屬片從1號針移到2號針;b.把第3個金屬片從1號針移到3號針;c.把上面兩個金屬片從2號針移到3號針.其中(1)和(3)都需要借助中間針,用符號表示為:,,,,,,.共移動了7次.(1)探究四:請仿照前面步驟進行解答:當時,把上面3個金屬片作為一個整體,移動的順序是:___________________________________________________.(2)探究五:根據(jù)上面的規(guī)律你可以發(fā)現(xiàn)當時,需要移動________次.(3)探究六:把個金屬片從1號針移到3號針,最少移動________次.(4)探究七:如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,當時如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,那么與的關系是__________.25.(10分)解方程:;26.(10分)如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.(1)判斷直線CD與⊙O的位置關系,并說明理由;(2)若BE=,DE=3,求⊙O的半徑及AC的長.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)點E為BC中點和正方形的性質,得出∠BAE的正切值,從而判斷①,再證明△ABE∽△ECF,利用有兩邊對應成比例且夾角相等三角形相似即可證得△ABE∽△AEF,可判斷②③,過點E作AF的垂線于點G,再證明△ABE≌△AGE,△ECF≌△EGF,即可證明④.【詳解】解:∵E是BC的中點,∴tan∠BAE=,∴∠BAE30°,故①錯誤;∵四邊形ABCD是正方形,

∴∠B=∠C=90°,AB=BC=CD,

∵AE⊥EF,

∴∠AEF=∠B=90°,

∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,

∴∠BAE=∠CEF,在△BAE和△CEF中,,

∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③錯誤;設CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=a,EF=a,AF=5a,∴,,∴,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射線FE是∠AFC的角平分線,故②正確;過點E作AF的垂線于點G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正確.故選B.【點睛】此題考查了相似三角形的判定與性質和全等三角形的判定和性質,以及正方形的性質.題目綜合性較強,注意數(shù)形結合思想的應用.2、D【分析】直接利用平行線分線段成比例定理對各選項進行判斷即可.【詳解】解:∵a∥b∥c,

∴,∵AB=1.5,BC=2,DE=1.8,∴,∴EF=2.4

故選:D.【點睛】本題考查了平行線分線段成比例,掌握三條平行線截兩條直線,所得的對應線段成比例是關鍵.3、D【詳解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯誤,為假命題;B、=4的平方根是±2,錯誤,為假命題;C、有公共頂點且相等的兩個角是對頂角,錯誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.4、B【解析】必然事件就是一定會發(fā)生的事件,依據(jù)定義即可判斷.【詳解】A、明天太陽從北邊升起是不可能事件,錯誤;B、實心鉛球投入水中會下沉是必然事件,正確;C、籃球隊員在罰球線投籃一次,投中是隨機事件,錯誤;D、拋出一枚硬幣,落地后正面向上是隨機事件,錯誤;故選B.【點睛】考查的是必然事件、不可能事件、隨機事件的概念,必然事件是指在一定條件下,一定發(fā)生的事件.5、A【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在俯視圖中.【詳解】從上面看易得上面一層有3個正方形,下面左邊有一個正方形.故選A.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.6、A【分析】首先分別求出扇形和圓的半徑,再根據(jù)面積公式求出面積,最后求出比值即可.【詳解】如圖1,連接OD,∵四邊形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=41°,∴OB=AB=1,由勾股定理得:,∴扇形的面積是;如圖2,連接MB、MC,∵四邊形ABCD是⊙M的內接四邊形,四邊形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=41°,∵BC=1,∴MC=MB=,∴⊙M的面積是,∴扇形和圓形紙板的面積比是,即圓形紙片和扇形紙片的面積比是4:1.故選:A.【點睛】本題考查了正方形性質,圓內接四邊形性質,扇形的面積公式的應用,解此題的關鍵是求出扇形和圓的面積,題目比較好,難度適中.7、C【解析】由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度數(shù),再根據(jù)直角三角形的性質求出答案.【詳解】解:∵AB是⊙O的直徑,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故選:C.【點睛】此題考查了圓周角定理以及直角三角形的性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.8、C【分析】首先連接OB,OA,由⊙O是正方形ABCD的外接圓,即可求得∠AOB的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得的度數(shù).【詳解】解:連接OB,OA,∵⊙O是正方形ABCD的外接圓,∴∠BOA=90°,∴=∠BOA=45°.故選:C.【點睛】此題考查了圓周角定理與圓的內接多邊形、正方形的性質等知識.此題難度不大,注意準確作出輔助線,注意數(shù)形結合思想的應用.9、D【分析】根據(jù)黃金分割點的比例,求出距離即可.【詳解】∵黃金分割點的比例為(米)∴主持人站立的位置離舞臺前沿較近的距離約為(米)故答案為:D.【點睛】本題考查了黃金分割點的實際應用,掌握黃金分割點的比例是解題的關鍵.10、A【分析】設這兩年污水利用率的平均增長率是,原有污水利用率為1,利用原有污水利用率(1+平均每年污水利用率的增長率=污水利用率,列方程即可.【詳解】解:設這兩年污水利用率的平均增長率是,由題意得出:故答案為:A.【點睛】本題考查的知識點是用一元二次方程解決實際問題,解題的關鍵是根據(jù)題目找出等量關系式,再列方程.二、填空題(每小題3分,共24分)11、37°【分析】根據(jù)圓周角定理直接得到∠ACB=35°.【詳解】解:根據(jù)圓周角定理有∠ACB=∠AOB=×74°=37°;故答案為37°.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、-4【分析】將x=2代入方程求出m的值,再解一元二次方程求出方程的另一個根.【詳解】解:將x=2代入方程得,,解得,∴一元二次方程為解方程得:∴方程得另一個根為-4故答案為:-4.【點睛】本題考查的知識點是解一元二次方程,屬于基礎題目,比較容易掌握.13、(﹣3,9)【分析】根據(jù)二次函數(shù)性質可得出點A1的坐標,求得直線A1A2為y=x+2,聯(lián)立方程求得A2的坐標,即可求得A3的坐標,同理求得A4的坐標,即可求得A5的坐標.【詳解】∵A點坐標為(1,1),∴直線OA為y=x,A1(﹣1,1),∵A1A2∥OA,∴直線A1A2為y=x+2,解得:或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直線A3A4為y=x+6,解得:或,∴A4(3,9),∴A5(﹣3,9),故答案為:(﹣3,9).【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、一次函數(shù)的圖象以及交點的坐標,根據(jù)坐標的變化找出變化規(guī)律是解題的關鍵.14、6【分析】根據(jù)題意cosB=,得到AB=,代入計算即可.【詳解】解:Rt△ABC中,∠C=90°,cosB=,可知cosB=得到AB=,又知BC=4,代入得到AB=故填6.【點睛】本題考查解直角三角形相關,根據(jù)銳角三角函數(shù)進行分析求解.15、4+【分析】如圖所示:設圓O與BC的切點為M,連接OM.由切線的性質可知OM⊥BC,然后證明△OMG≌△GCD,得到OM=GC=3,CD=GM=BC﹣BM﹣GC=BC﹣3.設AB=a,BC=a+3,AC=3a,從而可求得∠ACB=20°,從而得到,故此可求得AB=,則BC=+2.求得AB+BC=4+.【詳解】解:解:如圖所示:設圓0與BC的切點為M,連接OM.

∵BC是圓O的切線,M為切點,

∴OM⊥BC.

∴∠OMG=∠GCD=90°.

由翻折的性質可知:OG=DG.

∵OG⊥GD,

∴∠OGM+∠DGC=90°.

又∵∠MOG+∠OGM=90°,

∴∠MOG=∠DGC.

在△OMG和△GCD中,,∴△OMG≌△GCD.

∴OM=GC=3.

CD=GM=BC-BM-GC=BC-3.

∵AB=CD,

∴BC-AB=3.

設AB=a,則BC=a+3.

∵圓O是△ABC的內切圓,

∴AC=AB+BC-3r.

∴AC=3a.∴.∴∠ACB=20°.∴,∴.故答案為:.考點:3、三角形的內切圓與內心;3、矩形的性質;2、翻折變換(折疊問題)16、1【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經過物體頂部的太陽光線三者構成的兩個直角三角形相似.利用相似比和投影知識解題,【詳解】∵,∴,即∴樹高為1m故答案為:1.【點睛】利用相似比和投影知識解題,在某一時刻,實際高度和影長之比是一定的,此題就用到了這一知識點.17、y=2(x+2)2-3【分析】根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】解:根據(jù)“上加下減,左加右減”的原則可知,二次函數(shù)y=2x2的圖象向左平移2個單位,再向下平移3個單位后得到的圖象表達式為y=2(x+2)2-3【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關鍵.18、.【分析】把代入到一元二次方程中求出的值即可.【詳解】解:∵是一元二次方程的一個根,∴,解得:,故答案為:.【點睛】本題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值,牢記方程的解滿足方程,代入即可是解決此類問題的關鍵.三、解答題(共66分)19、(1)y=-x+200;(2)這天的每間客房的價格是元或元.【解析】(1)根據(jù)題意直接寫出函數(shù)關系式,然后整理即可;(2)用每間房的收入(180+x),乘以出租的房間數(shù)(-x+200)等于總收入列出方程求解即可.【詳解】(1)設每間客房每天的定價增加x元,賓館出租的客房為y間,根據(jù)題意,得:y=200-4×,∴y=-x+200;(2)設每間客房每天的定價增加x元,根據(jù)題意,得(180+x)(-x+200)=38400,整理后,得x2-320x+6000=0,解得x1=20,x2=300,當x=20時,x+180=200(元),當x=300時,x+180=480(元),答:這天的每間客房的價格是200元或480元.【點睛】本題主要考查一元二次方程的應用,列一元二次方程,用因式分解法解一元二次方程,解題關鍵在于根據(jù)題意準確列出一元二次方程.20、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數(shù)解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯(lián)立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯(lián)立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉化得到AM=BN,設點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側,∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數(shù)表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數(shù)表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點的橫坐標相同,且BH=MH,∵M是拋物線上一點,∴可設點M的坐標為(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴點N的橫坐標為﹣4,可設直線AC:y=kx﹣3,則0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,當x=﹣4時,y=﹣(﹣4)﹣3=1,∴點N的坐標為(﹣4,1).【點睛】本題主要考查二次函數(shù)的圖象與性質,還涉及到全等三角形的判定及其性質、三角形面積公式等知識點,綜合性較強,解題的關鍵是熟練掌握二次函數(shù)的圖象與性質.21、(1),;(2)或;(3)存在,點的坐標是或或.【分析】(1)先把點A(4,3)代入求出m的值,再把A(-2,n)代入求出n即可;(2)利用圖象法即可解決問題,寫出直線的圖象在反比例函數(shù)的圖象上方的自變量的取值范圍即可;(3)先求出直線AB的解析式,然后分兩種情況求解即可:①當AC=AD時,②當CD=CA時,其中又分為點D在點C的左邊和右邊兩種情況.【詳解】解:(1)∵反比例函數(shù)過點點A(4,3),∴,∴,,把代入得,∴;(2)由圖像可知,不等式的解集為或;(3)設直線AB的解析式為y=kx+b,把A(4,3),B(-2,-6),代入得,解得,∴,當y=0時,,解得x=2,∴C(2,0),當AC=AD時,作AH⊥x軸于點H,則CH=4-2=2,∴CD1=2CH=4,∴OD1=2+4=6,∴D1(6,0),當CD=CA時,∵AC==,∴D2(2+,0),D3(2-,0),綜上可知,點的坐標是(6,0)或(2+,0)或(2-,0).【點睛】本題考查了待定系數(shù)法求反比例函數(shù)和一次函數(shù)解析式,利用函數(shù)圖象解不等式,等腰三角形的性質,坐標與圖形的性質,勾股定理,以及分類討論的數(shù)學思想.熟練掌握待定系數(shù)法和分類討論的數(shù)學思想是解答本題的關鍵.22、(1)y=;(2)①3;②-1≤a-【分析】(1)由題意代入A點坐標,求出曲線的表達式即可;(2)①當時,根據(jù)圖像直接寫出圖象G上的整數(shù)點個數(shù)即可;②當圖象G內只有3個整數(shù)點時,根據(jù)圖像直接寫出a的取值范圍.【詳解】解:(1)∵A(1,1),∴k=1,∴.(2)①觀察圖形時,可知個數(shù)為3;②觀察圖像得到.【點睛】本題考查反比例函數(shù)圖像相關性質,熟練掌握反比例函數(shù)圖像相關性質是解題關鍵.23、(1)見解析;(2).【分析】證明:由繞點順時針旋轉到,利用旋轉性質得BC=AC,,由∠ABC=45o,可知∠ACB=90o,由,可證即可,解:連,由繞點順時針旋轉到,得,CD=CE=2,BD=AE,利用等式性質得,∠CDE=45o,利用勾股定理DE=2,由∠ADC=45o可得∠ADE=90o,由勾股定理可求AE即可.【詳解】證明:繞點順時針旋轉一定角度后,點的對應點恰好與點重合,得到,,又即,解:連,繞點順時針旋轉一定角度后,點的對應點恰好與點重合,得到,即,又,.【點睛】本題考查旋轉的性質和勾股定理問題,關鍵是掌握三角形旋轉的性質與勾股定理知識,會利用三角形旋轉性質結合∠ABC=45o證∠ACB=90o,利用余角證AE⊥BD,利用等式性質證∠DCE=90o,利用勾股定理求DE,結合∠ADC=45o證Rt△ADE,會用勾股定理求AE使問題得以解決.24、(1)當時,移動順序為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論