上海金山中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第1頁
上海金山中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第2頁
上海金山中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第3頁
上海金山中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第4頁
上海金山中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海金山中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,則三個(gè)數(shù)、、由小到大的順序是()A. B.C. D.2.若實(shí)數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.3.已知,表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知,則的值域?yàn)锳. B. C. D.5.如果a<b<0,那么下列不等式成立的是()A. B. C. D.6.已知直線,平面,且,下列條件中能推出的是()A. B. C. D.與相交7.若是2與8的等比中項(xiàng),則等于()A. B. C. D.328.設(shè)等比數(shù)列的前項(xiàng)和為,若,,則()A.14 B.18 C.36 D.609.若是等比數(shù)列,下列結(jié)論中不正確的是()A.一定是等比數(shù)列; B.一定是等比數(shù)列;C.一定是等比數(shù)列; D.一定是等比數(shù)列10.正項(xiàng)等比數(shù)列與等差數(shù)列滿足,,,則的大小關(guān)系為()A. B. C. D.不確定二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,sin2A=sin12.?dāng)?shù)列的前項(xiàng)和為,若對(duì)任意,都有,則數(shù)列的前項(xiàng)和為________13.設(shè)等比數(shù)列的首項(xiàng)為,公比為,所有項(xiàng)和為1,則首項(xiàng)的取值范圍是____________.14.在平面直角坐標(biāo)系xOy中,若直線與直線平行,則實(shí)數(shù)a的值為______.15.如果函數(shù)的圖象關(guān)于直線對(duì)稱,那么該函數(shù)在上的最小值為_______________.16.已知角終邊經(jīng)過點(diǎn),則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項(xiàng)和為,對(duì)任意滿足,且,數(shù)列滿足,,其前9項(xiàng)和為63.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前項(xiàng)和為,若存在正整數(shù),有,求實(shí)數(shù)的取值范圍;(3)將數(shù)列,的項(xiàng)按照“當(dāng)為奇數(shù)時(shí),放在前面;當(dāng)為偶數(shù)時(shí),放在前面”的要求進(jìn)行“交叉排列”,得到一個(gè)新的數(shù)列:…,求這個(gè)新數(shù)列的前項(xiàng)和.18.記Sn為等差數(shù)列an的前n項(xiàng)和,已知(1)求an(2)求Sn,并求S19.如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).求證:(1)平面;(2).20.已知函數(shù)(1)若關(guān)于的不等式的解集為,求的值;(2)若對(duì)任意恒成立,求的取值范圍.21.已知向量,,.(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)記的內(nèi)角的對(duì)邊分別為.若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

比較三個(gè)數(shù)、、與的大小關(guān)系,再利用指數(shù)函數(shù)的單調(diào)性可得出、的大小,可得出這三個(gè)數(shù)的大小關(guān)系.【題目詳解】,,,,且,函數(shù)為減函數(shù),所以,,即,,因此,,故選C.【題目點(diǎn)撥】本題考查指數(shù)冪的大小關(guān)系,常用的方法有如下幾種:(1)底數(shù)相同,指數(shù)不同,利用同底數(shù)的指數(shù)函數(shù)的單調(diào)性來比較大?。唬?)指數(shù)相同,底數(shù)不同,利用同指數(shù)的冪函數(shù)的單調(diào)性來比較大小;(3)底數(shù)和指數(shù)都不相同時(shí),可以利用中間值法來比較大小.2、D【解題分析】

根據(jù)題意,由不等式的性質(zhì)依次分析選項(xiàng),綜合即可得答案.【題目詳解】根據(jù)題意,依次分析選項(xiàng):對(duì)于A、,時(shí),有成立,故A錯(cuò)誤;對(duì)于B、,時(shí),有成立,故B錯(cuò)誤;對(duì)于C、,時(shí),有成立,故C錯(cuò)誤;對(duì)于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【題目點(diǎn)撥】本題考查不等式的性質(zhì),對(duì)于錯(cuò)誤的結(jié)論舉出反例即可.3、A【解題分析】

根據(jù)線面垂直的判定與性質(zhì)、線面平行的判定與性質(zhì)依次判斷各個(gè)選項(xiàng)可得結(jié)果.【題目詳解】選項(xiàng):由線面垂直的性質(zhì)定理可知正確;選項(xiàng):由線面垂直判定定理知,需垂直于內(nèi)兩條相交直線才能說明,錯(cuò)誤;選項(xiàng):若,則平行關(guān)系不成立,錯(cuò)誤;選項(xiàng):的位置關(guān)系可能是平行或異面,錯(cuò)誤.故選:【題目點(diǎn)撥】本題考查空間中線面平行與垂直相關(guān)命題的辨析,關(guān)鍵是能夠熟練掌握空間中直線與平面位置關(guān)系的判定與性質(zhì)定理.4、C【解題分析】

利用求函數(shù)的周期為,計(jì)算即可得到函數(shù)的值域.【題目詳解】因?yàn)椋?,,因?yàn)楹瘮?shù)的周期,所以函數(shù)的值域?yàn)?,故選C.【題目點(diǎn)撥】本題考查函數(shù)的周期運(yùn)算,及利用函數(shù)的周期性求函數(shù)的值域.5、D【解題分析】對(duì)于選項(xiàng)A,因?yàn)?,所以,所以即,所以選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B,,所以,選項(xiàng)B錯(cuò)誤;對(duì)于選項(xiàng)C,,當(dāng)時(shí),,當(dāng),,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D,,所以,又,所以,所以,選D.6、C【解題分析】

根據(jù)線面垂直的性質(zhì),逐項(xiàng)判斷即可得出結(jié)果.【題目詳解】A中,若,由,可得;故A不滿足題意;B中,若,由,可得;故B不滿足題意;C中,若,由,可得;故C正確;D中,若與相交,由,可得異面或平,故D不滿足題意.故選C【題目點(diǎn)撥】本題主要考查線面垂直的性質(zhì),熟記線面垂直的性質(zhì)定理即可,屬于??碱}型.7、B【解題分析】

利用等比中項(xiàng)性質(zhì)列出等式,解出即可?!绢}目詳解】由題意知,,∴.故選B【題目點(diǎn)撥】本題考查等比中項(xiàng),屬于基礎(chǔ)題。8、A【解題分析】

由已知結(jié)合等比數(shù)列的求和公式可求,,q2,然后整體代入到求和公式即可求.【題目詳解】∵等比數(shù)列{an}中,S2=2,S4=6,∴q≠1,則,聯(lián)立可得,2,q2=2,S62×(1﹣23)=1.故選:A.【題目點(diǎn)撥】本題主要考查了等比數(shù)列的求和公式的簡(jiǎn)單應(yīng)用,考查了整體代入的運(yùn)算技巧,屬于基礎(chǔ)題.9、C【解題分析】

判斷等比數(shù)列,可根據(jù)為常數(shù)來判斷.【題目詳解】設(shè)等比數(shù)列的公比為,則對(duì)A:為常數(shù),故一定是等比數(shù)列;對(duì)B:為常數(shù),故一定是等比數(shù)列;對(duì)C:當(dāng)時(shí),,此時(shí)為每項(xiàng)均為0的常數(shù)列;對(duì)D:為常數(shù),故一定是等比數(shù)列.故選:C.【題目點(diǎn)撥】本題主要考查等比數(shù)列的判定,若數(shù)列的后項(xiàng)除以前一項(xiàng)為常數(shù),則該數(shù)列為等比數(shù)列.本題選項(xiàng)C容易忽略時(shí)這種情況.10、B【解題分析】

利用分析的關(guān)系即可.【題目詳解】因?yàn)檎?xiàng)等比數(shù)列與等差數(shù)列,故又,當(dāng)且僅當(dāng)時(shí)“=”成立,又即,故,故選:B【題目點(diǎn)撥】本題主要考查等差等比數(shù)列的性質(zhì)與基本不等式的“一正二定三相等”.若是等比數(shù)列,且,則若是等差數(shù)列,且,則二、填空題:本大題共6小題,每小題5分,共30分。11、π【解題分析】

根據(jù)正弦定理化簡(jiǎn)角的關(guān)系式,從而湊出cosA【題目詳解】由正弦定理得:a2=則cos∵A∈0,π本題正確結(jié)果:π【題目點(diǎn)撥】本題考查利用正弦定理和余弦定理解三角形問題,屬于基礎(chǔ)題.12、【解題分析】

根據(jù)數(shù)列的遞推公式,求得,再結(jié)合等差等比數(shù)列的前項(xiàng)和公式,即可求解,得到答案.【題目詳解】由題意,數(shù)列滿足,…①,…②由①-②,可得,即當(dāng)時(shí),,所以,則數(shù)列的前項(xiàng)和為.【題目點(diǎn)撥】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,以及等差、等比數(shù)列的前項(xiàng)和的應(yīng)用,其中解答中熟練應(yīng)用熟練的遞推公式得到數(shù)列的通項(xiàng)公式,再結(jié)合等差、等比數(shù)列的前項(xiàng)和公式的準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.13、【解題分析】

由題意可得得且,可得首項(xiàng)的取值范圍.【題目詳解】解:由題意得:,,故答案為:.【題目點(diǎn)撥】本題主要考查等比數(shù)列前n項(xiàng)的和、數(shù)列極限的運(yùn)算,屬于中檔題.14、1【解題分析】

由,解得,經(jīng)過驗(yàn)證即可得出.【題目詳解】由,解得.經(jīng)過驗(yàn)證可得:滿足直線與直線平行,則實(shí)數(shù).故答案為:1.【題目點(diǎn)撥】本題考查直線的平行與斜率之間的關(guān)系,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.15、【解題分析】

根據(jù)三角公式得輔助角公式,結(jié)合三角函數(shù)的對(duì)稱性求出值,再利用的取值范圍求出函數(shù)的最小值.【題目詳解】解:,令,則,則.因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以,即,則,平方得.整理可得,則,所以函數(shù).因?yàn)椋裕?dāng)時(shí),即,函數(shù)有最小值為.故答案為:.【題目點(diǎn)撥】本題主要考查三角函數(shù)最值求解,結(jié)合輔助角公式和利用三角函數(shù)的對(duì)稱性建立方程是解決本題的關(guān)鍵.16、4【解題分析】

根據(jù)任意角的三角函數(shù)的定義,結(jié)合同角三角函數(shù)的基本關(guān)系求解即可.【題目詳解】因?yàn)榻墙K邊經(jīng)過點(diǎn),所以,因此.故答案為:4【題目點(diǎn)撥】本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解題分析】試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得,也即得,利用求得,再求得可得數(shù)列通項(xiàng),利用已知可得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2)代入得,變形后得,從而易求得和,于是有,只要求得的最大值即可得的最小值,從而得的范圍,研究的單調(diào)性可得;(3)根據(jù)新數(shù)列的構(gòu)造方法,在求新數(shù)列的前項(xiàng)和時(shí),對(duì)分類:,和三類,可求解.試題解析:(1)∵,∴數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,∴,即,∴,又,∴.∵,∴數(shù)列是等差數(shù)列,設(shè)的前項(xiàng)和為,∵且,∴,∴的公差為(2)由(1)知,∴,∴設(shè),則,∴數(shù)列為遞增數(shù)列,∴,∵對(duì)任意正整數(shù),都有恒成立,∴.(3)數(shù)列的前項(xiàng)和,數(shù)列的前項(xiàng)和,①當(dāng)時(shí),;②當(dāng)時(shí),,特別地,當(dāng)時(shí),也符合上式;③當(dāng)時(shí),.綜上:考點(diǎn):等差數(shù)列的通項(xiàng)公式,數(shù)列的單調(diào)性,數(shù)列的求和.18、(1)an=2n-12;(2)Sn【解題分析】

(1)設(shè)等差數(shù)列an的公差為d,根據(jù)題意求出d(2)根據(jù)等差數(shù)列的前n項(xiàng)和公式先求出Sn,再由an=2n-12≥0【題目詳解】(1)因?yàn)閿?shù)列an為等差數(shù)列,設(shè)公差為d由a3=-6,a6=0所以an(2)因?yàn)镾n為等差數(shù)列an的前所以Sn由an=2n-12≥0得所以當(dāng)n=5或n=6時(shí),【題目點(diǎn)撥】本題主要考查等差數(shù)列,熟記通項(xiàng)公式以及前n項(xiàng)和公式即可,屬于??碱}型.19、(1)見解析;(2)見解析【解題分析】

(1)連AF交BE于Q,連QO,推導(dǎo)出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.(2)推導(dǎo)出BO⊥AC,從而BO⊥面PAC,進(jìn)而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO,利用線面垂直的性質(zhì)可證PA⊥BE.【題目詳解】(1)連接AF交BE于Q,連接QO,因?yàn)镋,F(xiàn)分別為邊PA,PB的中點(diǎn),所以Q為△PAB的重心,可得:2,又因?yàn)镺為線段AC的中點(diǎn),G是線段CO的中點(diǎn),所以2,于是,所以FG∥QO,因?yàn)镕G?平面EBO,QO?平面EBO,所以FG∥平面EBO.(2)因?yàn)镺為邊AC的中點(diǎn),AB=BC,所以BO⊥AC,因?yàn)槠矫鍼AC⊥平面ABC,平面PAC∩平面ABC=AC,BO?平面ABC,所以BO⊥平面PAC,因?yàn)镻A?平面PAC,所以BO⊥PA,因?yàn)辄c(diǎn)E,O分別為線段PA,AC的中點(diǎn),所以EO∥PC,因?yàn)镻A⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO?平面EBO,所以PA⊥平面EBO,因?yàn)锽E?平面EBO,所以PA⊥BE.【題目點(diǎn)撥】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.20、(1);(2)【解題分析】

(1)不等式可化為,而解集為,可利用韋達(dá)定理或直接代入即可得到答案;(2)法一:討論和時(shí),分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【題目詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關(guān)系可知,解得,經(jīng)檢驗(yàn)時(shí)滿足題意.法二:由題意知,原不等式所對(duì)應(yīng)的方程的兩個(gè)實(shí)數(shù)根為和4,將(或4)代入方程計(jì)算可得,經(jīng)檢驗(yàn)時(shí)滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,即.故實(shí)數(shù)的取值范圍為.法二:二次函數(shù)的對(duì)稱軸為.①若,即,函數(shù)在上單調(diào)遞增,恒成立,故;②若,即,此時(shí)在上單調(diào)遞減,在上單調(diào)遞增,由得.故;③若,即,此時(shí)函數(shù)在上單調(diào)遞減,由得,與矛盾,故不存在.綜上所述,實(shí)數(shù)的取值范圍為.【題目點(diǎn)撥】本題主要考查一元二次不等式的性質(zhì),不等式恒成立中含參問題,意在考查學(xué)生的分析能力,計(jì)算能力及轉(zhuǎn)化能力,難度較大.21、(1)最小正周期為,單調(diào)遞減區(qū)間為;(2)或【解題分析】

(1)由向量的數(shù)量積的運(yùn)算公式和三角恒等變換的公式化簡(jiǎn)可得,再結(jié)合三角函數(shù)的性質(zhì),即可求解.(2)由(1),根據(jù),解得,利用正弦定理,求得,再利用余弦定理列出方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論