版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆上海市黃浦區(qū)市級名校數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,若、、三點共線,則為()A. B. C. D.22.從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是()A.至少有一個紅球與都是紅球B.至少有一個紅球與都是白球C.恰有一個紅球與恰有二個紅球D.至少有一個紅球與至少有一個白球3.在△ABC中,若a=2bsinA,則B為A. B. C.或 D.或4.如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()A.a(chǎn)km B.a(chǎn)kmC.a(chǎn)km D.2akm5.已知平面向量滿足:,,,若,則的值為()A. B. C.1 D.-16.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10記為數(shù)列,將可被5整除的三角形數(shù),按從小到大的順序組成一個新數(shù)列,可以推測:()A.1225 B.1275 C.2017 D.20187.已知直線,,若,則()A.2 B. C. D.18.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.9.如圖是某個正方體的平面展開圖,,是兩條側(cè)面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為10.在下列區(qū)間中,函數(shù)的零點所在的區(qū)間為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列中,已知,50為第________項.12.若圓:與圓:相交于,兩點,且兩圓在點處的切線互相垂直,則公共弦的長度是______.13.如圖,某人在高出海平面方米的山上P處,測得海平面上航標(biāo)A在正東方向,俯角為,航標(biāo)B在南偏東,俯角,且兩個航標(biāo)間的距離為200米,則__________米.14.若存在實數(shù)使得關(guān)于的不等式恒成立,則實數(shù)的取值范圍是____.15.在正方體中,是棱的中點,則異面直線與所成角的余弦值為__________.16.在中,角所對的邊分別為,,則____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足若數(shù)列滿足:(1)求數(shù)列的通項公式;(2)求證:是等差數(shù)列.18.已知數(shù)列為遞增的等差數(shù)列,,且成等比數(shù)列.?dāng)?shù)列的前項和為,且滿足.(1)求,的通項公式;(2)令,求的前項和.19.已知函數(shù)滿足且.(1)當(dāng)時,求的表達(dá)式;(2)設(shè),求證:;20.在中,角A,B,C的對邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.21.在中,角、、所對的邊分別為、、,且滿足.(1)求角;(2)若,,求的周長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由平面向量中的三點共線問題可得:,由基本定理及線性運算可得:即得解.【題目詳解】因為,若,,三點共線則,解得,即即即即故選:【題目點撥】本題考查平面向量基本定理和共線定理,屬于基礎(chǔ)題.2、C【解題分析】
從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,不同的取球情況共有以下幾種:3個球全是紅球;2個紅球和1個白球;1個紅球2個白球;3個全是白球.選項A中,事件“都是紅球”是事件“至少有一個紅球”的子事件;選項B中,事件“至少有一個紅球”與事件“都是白球”是對立事件;選項D中,事件“至少有一個紅球”與事件“至少有一個白球”的事件為“2個紅球1個白球”與“1個紅球2個白球”;選項C中,事件“恰有一個紅球”與事件“恰有2個紅球”互斥不對立,故選C.3、C【解題分析】,,則或,選C.4、B【解題分析】
先根據(jù)題意確定的值,再由余弦定理可直接求得的值.【題目詳解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故選:B.【題目點撥】本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.5、C【解題分析】
將代入,化簡得到答案.【題目詳解】故答案選C【題目點撥】本題考查了向量的運算,意在考查學(xué)生的計算能力.6、A【解題分析】
通過尋找規(guī)律以及數(shù)列求和,可得,然后計算,可得結(jié)果.【題目詳解】根據(jù)題意可知:則由…可得所以故選:A【題目點撥】本題考查不完全歸納法的應(yīng)用,本題難點在于找到,屬難題,7、D【解題分析】
當(dāng)為,為,若,則,由此求解即可【題目詳解】由題,因為,所以,即,故選:D【題目點撥】本題考查已知直線垂直求參數(shù)問題,屬于基礎(chǔ)題8、C【解題分析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【題目詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【題目點撥】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.9、D【解題分析】
先將平面展開圖還原成正方體,再判斷求解.【題目詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【題目點撥】本題主要考查空間直線的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10、B【解題分析】
由函數(shù)的解析式,再根據(jù)函數(shù)零點的存在定理可得函數(shù)的零點所在的區(qū)間.【題目詳解】函數(shù)的零點所在的區(qū)間即函數(shù)與的交點所在區(qū)間.由函數(shù)與在定義域上只有一個交點,如圖.函數(shù)在定義域上只有一個零點.又,所以.所以的零點在上故選:B【題目點撥】本題主要考查求函數(shù)的零點所在區(qū)間,函數(shù)零點的存在定理,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】
方程變?yōu)?,設(shè),解關(guān)于的二次方程可求得。【題目詳解】,則,即設(shè),則,有或取得,,所以是第4項?!绢}目點撥】發(fā)現(xiàn),原方程可通過換元,變?yōu)殛P(guān)于的一個二次方程。對于指數(shù)結(jié)構(gòu),,等,都可以通過換元變?yōu)槎涡问窖芯俊?2、【解題分析】
根據(jù)兩圓在點處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運用點到直線的距離公式求出圓心到公共弦的距離,進(jìn)而求出公共弦長.【題目詳解】由題意,圓圓心坐標(biāo),半徑,圓圓心坐標(biāo),半徑,因為兩圓相交于點,且兩圓在點處的切線互相垂直,所以是直角三角形,,所以,由兩點間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長故答案為:【題目點撥】本題主要考查兩圓公共弦的方程、圓弦長的求法和點到直線的距離公式,考查學(xué)生的分析能力,屬于基礎(chǔ)題.13、1【解題分析】
根據(jù)題意利用方向坐標(biāo),根據(jù)三角形邊角關(guān)系,利用余弦定理列方程求出的值.【題目詳解】航標(biāo)在正東方向,俯角為,由題意得,.航標(biāo)在南偏東,俯角為,則有,.所以,;由余弦定理知,即,可求得(米.故答案為:1.【題目點撥】本題考查方向坐標(biāo)以及三角形邊角關(guān)系的應(yīng)用問題,考查余弦定理應(yīng)用問題,是中檔題.14、【解題分析】
先求得的取值范圍,將題目所給不等式轉(zhuǎn)化為含的絕對值不等式,對分成三種情況,結(jié)合絕對值不等式的解法和不等式恒成立的思想,求得的取值范圍.【題目詳解】由于,故可化簡得恒成立.當(dāng)時,顯然成立.當(dāng)時,可得,,可得且,可得,即,解得.當(dāng)時,可得,可得且,可得,即,解得.綜上所述,的取值范圍是.【題目點撥】本小題主要考查三角函數(shù)的值域,考查含有絕對值不等式恒成立問題,考查存在性問題的求解策略,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.15、【解題分析】
假設(shè)正方體棱長,根據(jù)//,得到異面直線與所成角,計算,可得結(jié)果.【題目詳解】假設(shè)正方體棱長為1,因為//,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【題目點撥】本題考查異面直線所成的角,屬基礎(chǔ)題.16、【解題分析】
利用正弦定理將邊角關(guān)系式中的邊都化成角,再結(jié)合兩角和差公式進(jìn)行整理,從而得到.【題目詳解】由正弦定理可得:即:本題正確結(jié)果:【題目點撥】本題考查李用正弦定理進(jìn)行邊角關(guān)系式的化簡問題,屬于常規(guī)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(1)證明見解析【解題分析】
數(shù)列滿足,變形為,利用等比數(shù)列的通項公式即可得出數(shù)列滿足:,時,,可得,化為:,可得:,相減化簡即可證明.【題目詳解】(1)數(shù)列滿足,,數(shù)列是等比數(shù)列,首項為1,公比為1.,.證明:數(shù)列滿足:,時,,解得.時,,可得,化為:,可得:,相減可得:,化為:,是等差數(shù)列.【題目點撥】本題主要考查了等差數(shù)列與等比數(shù)列的定義通項公式、指數(shù)運算性質(zhì)、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.18、(1),(2)【解題分析】
(1)先根據(jù)成等比數(shù)列,可求出公差,即得的通項公式;根據(jù)可得的通項公式;(2)由(1)可得的通項公式,用錯位相減法計算它的前n項和,即得。【題目詳解】(1)由題得,,設(shè)數(shù)列的公差為,則有,解得,那么等差數(shù)列的通項公式為;數(shù)列的前項和為,且滿足,當(dāng)時,,可得,當(dāng)時,可得,整理得,數(shù)列是等比數(shù)列,通項公式為.(2)由題得,,前n項和,,兩式相減可得,整理化簡得.【題目點撥】本題考查等比數(shù)列的性質(zhì),以及用錯位相減法求數(shù)列的前n項和,對計算能力有一定要求。19、(1);(2)詳見解析.【解題分析】
(1)令,將函數(shù)表示為等比數(shù)列,根據(jù)等比數(shù)列公式得到答案.(2)將表示出來,利用錯位相減法得到前N項和,最后證明不等式.【題目詳解】(1)令,得,∴,即(2),設(shè),則,①,②來①-②得,【題目點撥】本題考查了函數(shù)與數(shù)列的關(guān)系,錯位相減法,綜合性強,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20、(1);(2)【解題分析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達(dá)到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉(zhuǎn)化為求bc的最大值.【題目詳解】(1)因為(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因為b2+c2-a2=bc,所以bc=b2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年影響工程地質(zhì)勘察結(jié)果的因素
- 2026年理解端午節(jié)的傳承與象征
- 2026年紅色祝福開工大吉的創(chuàng)意元素
- 2026貴州省林業(yè)局直屬事業(yè)單位招聘20人筆試模擬試題及答案解析
- 2026年深基坑工程中的鉆探策略
- 2026年滁州市南譙區(qū)事業(yè)單位招31人考試備考試題及答案解析
- 2026福建廈門市集美區(qū)寧寶幼兒園招聘非在編(頂崗)教師4人筆試備考試題及答案解析
- 2026浙江嘉興市海寧市知識產(chǎn)權(quán)保護(hù)中心招聘1人筆試參考題庫及答案解析
- 2026上半年安徽事業(yè)單位聯(lián)考滁州市瑯琊區(qū)招聘10人備考題庫完整答案詳解
- 2026廣西供銷投資集團有限公司招聘6人筆試備考題庫及答案解析
- 2025上海開放大學(xué)(上海市電視中等專業(yè)學(xué)校)工作人員招聘3人(二)考試筆試參考題庫附答案解析
- 急性闌尾炎與右側(cè)輸尿管結(jié)石鑒別診斷方案
- 公司網(wǎng)絡(luò)團隊介紹
- 路虎攬勝購買合同
- 2025年文化旅游活動效果評估計劃可行性研究報告
- 塑木地板銷售合同范本
- 《青島市中小學(xué)心理危機干預(yù) 指導(dǎo)手冊》
- 三北工程林草濕荒一體化保護(hù)修復(fù)(2025年度退化草原修復(fù))監(jiān)理方案投標(biāo)文件(技術(shù)方案)
- 2024江蘇省常熟市中考物理試卷【歷年真題】附答案詳解
- 2025年企業(yè)法律合規(guī)性風(fēng)險評估與治理方案
- DBJT15-162-2019 建筑基坑施工監(jiān)測技術(shù)標(biāo)準(zhǔn)
評論
0/150
提交評論