版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省武岡二中2024屆數(shù)學高一下期末達標測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把一個已知圓錐截成個圓臺和一個小圓錐,已知圓臺的上、下底面半徑之比為,母線長為,則己知圓錐的母線長為().A. B. C. D.2.下列函數(shù)中,最小正周期為且圖象關于原點對稱的函數(shù)是()A. B.C. D.3.設等差數(shù)列,則等于()A.120 B.60 C.54 D.1084.已知圓C1:x2+y2+4y+3=0,圓C2:x2+A.210-3 B.210+35.記復數(shù)的虛部為,已知滿足,則為()A. B. C.2 D.6.在等差數(shù)列中,若,則()A.45 B.75 C.180 D.3207.若且,則的最小值是()A.6 B.12 C.24 D.168.已知點,則P在平面直角坐標系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限9.某實驗中學共有職工150人,其中高級職稱的職工15人,中級職稱的職工45人,一般職員90人,現(xiàn)采用分層抽樣抽取容量為30的樣本,則抽取的高級職稱、中級職稱、一般職員的人數(shù)分別為A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、1610.在中,角的對邊分別為,若,則形狀是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,則________12.已知等差數(shù)列的前三項為,則此數(shù)列的通項公式為______13.利用數(shù)學歸納法證明不等式“”的過程中,由“”變到“”時,左邊增加了_____項.14.等差數(shù)列前項和為,已知,,則_____.15.某幾何體的三視圖如圖所示,則該幾何體的體積為__________.16.直線與的交點坐標為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面為平行四邊形,點為中點,且.(1)證明:平面;(2)證明:平面平面.18.某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關系式;(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:月銷售產(chǎn)品件數(shù)300400500600700次數(shù)24954把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.19.已知向量,,函數(shù).(1)若且,求;(2)求函數(shù)的最小正周期T及單調(diào)遞增區(qū)間.20.已知函數(shù)的圖象過點,,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求實數(shù)的取值范圍.21.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
設圓錐的母線長為,根據(jù)圓錐的軸截面三角形的相似性,通過圓臺的上、下底面半徑之比為來求解.【題目詳解】設圓錐的母線長為,因為圓臺的上、下底面半徑之比為,所以,解得.故選:B【題目點撥】本題主要考查了旋轉(zhuǎn)體軸截面中的比例關系,還考查了運算求解的能力,屬于基礎題.2、A【解題分析】
求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可.【題目詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A.考點:三角函數(shù)的性質(zhì).3、C【解題分析】
題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決?!绢}目詳解】,選C.【題目點撥】題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決。也可將等式全部化為的表達式,整體代換計算出4、A【解題分析】
求出圓C1,C2的圓心坐標和半徑,作出圓C1關于直線l的對稱圓C1',連結(jié)C1'C2,則C1'C2與直線l的交點即為P點,此時M點為P【題目詳解】由圓C1:x可知圓C1圓心為0,-2圓C2圓心為3,-1圓C1關于直線l:y=x+1的對稱圓為圓C連結(jié)C1'C2,交l于P,則此時M點為PC1'與圓C1'的交點關于直線l對稱的點,N最小值為C1而C1∴PM+PN【題目點撥】本題考查了圓方程的綜合應用,考查了利用對稱關系求曲線上兩點間的最小距離,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.解決解析幾何中的最值問題一般有兩種方法:一是幾何意義,特別是用曲線的定義和平面幾何的有關結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.5、A【解題分析】
根據(jù)復數(shù)除法運算求得,從而可得虛部.【題目詳解】由得:本題正確選項:【題目點撥】本題考查復數(shù)虛部的求解問題,關鍵是通過復數(shù)除法運算得到的形式.6、C【解題分析】試題分析:因為數(shù)列為等差數(shù)列,且,所以,,從而,所以,而,所以,故選C.考點:等差數(shù)列的性質(zhì).7、D【解題分析】試題分析:,當且僅當時等號成立,所以最小值為16考點:均值不等式求最值8、B【解題分析】
利用特殊角的三角函數(shù)值的符號得到點的坐標,直接判斷點所在象限即可.【題目詳解】,.在平面直角坐標系中位于第二象限.故選B.【題目點撥】本題考查了三角函數(shù)值的符號,考查了三角函數(shù)的誘導公式的應用,是基礎題.9、B【解題分析】試題分析:高級職稱應抽??;中級職稱應抽?。灰话懵殕T應抽?。键c:分層抽樣點評:本題主要考查分層抽樣的定義與步驟.分層抽樣:當總體是由差異明顯的幾個部分組成的,可將總體按差異分成幾個部分(層),再按各部分在總體中所占比例進行抽樣.10、D【解題分析】
由,利用正弦定理化簡可得sin2A=sin2B,由此可得結(jié)論.【題目詳解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀是等腰三角形或直角三角形故選D.【題目點撥】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解題分析】
由向量的模長公式,計算得到答案.【題目詳解】因為向量,所以,所以答案為.【題目點撥】本題考查向量的模長公式,屬于簡單題.12、【解題分析】由題意可得,解得.
∴等差數(shù)列的前三項為-1,1,1.
則1.
故答案為.13、.【解題分析】
分析題意,根據(jù)數(shù)學歸納法的證明方法得到時,不等式左邊的表示式是解答該題的突破口,當時,左邊,由此將其對時的式子進行對比,得到結(jié)果.【題目詳解】當時,左邊,當時,左邊,觀察可知,增加的項數(shù)是,故答案是.【題目點撥】該題考查的是有關數(shù)學歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對應式子中的量,認真分析,明確哪些項是添的,得到結(jié)果.14、1【解題分析】
首先根據(jù)、即可求出和,從而求出?!绢}目詳解】,①,②①②得,,即,∴,即,∴,故答案為:1.【題目點撥】本題主要考查了解方程,以及等差數(shù)列的性質(zhì)和前項和。其中等差數(shù)列的性質(zhì):若則比較常考,需理解掌握。15、【解題分析】由三視圖知該幾何體是一個半圓錐挖掉一個三棱錐后剩余的部分,如圖所示,所以其體積為.點睛:求多面體的外接球的面積和體積問題常用方法有(1)三條棱兩兩互相垂直時,可恢復為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的對稱性,球心為上下底面外接圓的圓心連線的中點,再根據(jù)勾股定理求球的半徑;(3)如果設計幾何體有兩個面相交,可過兩個面的外心分別作兩個面的垂線,垂線的交點為幾何體的球心,本題就是第三種方法.16、【解題分析】
直接聯(lián)立方程得到答案.【題目詳解】聯(lián)立方程解得即兩直線的交點坐標為.故答案為【題目點撥】本題考查了兩直線的交點,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析【解題分析】
(1)連接交于點,連接,可證,從而可證平面.(2)可證平面,從而得到平面平面.【題目詳解】(1)連接交于點,連接,因為底面為平行四邊形,所以為中點.在中,又為中點,所以.又平面,平面,所以平面.(2)因為底面為平行四邊形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【題目點撥】線面平行的證明的關鍵是在面中找到一條與已知直線平行的直線,找線的方法是平行投影或中心投影,我們也可以通過面面平行證線面平行,這個方法的關鍵是構(gòu)造過已知直線的平面,證明該平面與已知平面平行.線面垂直的判定可由線線垂直得到,注意線線是相交的,也可由面面垂直得到,注意線在面內(nèi)且線垂直于兩個平面的交線.而面面垂直的證明可以通過線面垂直得到,也可以通過證明二面角是直二面角.18、(1);(2)方案一概率為,方案二概率為.【解題分析】
(1)利用一次函數(shù)和分段函數(shù)分別表示方案一、方案二的月工資與的關系式;(2)分別計算方案一、方案二的推銷員的月工資超過11090元的概率值.【題目詳解】解:(1)方案一:,;方案二:月工資為,所以.(2)方案一中推銷員的月工資超過11090元,則,解得,所以方案一中推銷員的月工資超過11090元的概率為;方案二中推銷員的月工資超過11090元,則,解得,所以方案二中推銷員的月工資超過11090元的概率為.【題目點撥】本題考查了分段函數(shù)與應用問題,也考查了利用頻率估計概率的應用問題,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于基礎題.19、(1)(2)最小正周期,的單調(diào)遞增區(qū)間為:.【解題分析】
(1)計算平面向量的數(shù)量積得出函數(shù)的解析式,求出時的值;(2)根據(jù)的解析式,求出它的最小正周期T及單調(diào)遞增區(qū)間.【題目詳解】函數(shù)時,,解得又;(2)函數(shù)它的最小正周期:令故:的單調(diào)遞增區(qū)間為:【題目點撥】本題考查了正弦型函數(shù)的性質(zhì),考查了學生綜合分析,轉(zhuǎn)化與劃歸,數(shù)形結(jié)合的能力,屬于中檔題.20、(1);(2);(3)【解題分析】
(1)根據(jù),,兩點可確定,的值;(2)由(1)知,,求出,的值,然后根據(jù),求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【題目詳解】(1)由得:,即,由知,,,由得:,即,即,由得,,所以;(2)由得:,即,由得:,(3)由得:,當時,,實數(shù)的取值范圍為.【題目點撥】本題主要考查了三角函數(shù)的圖象與性質(zhì),三角函數(shù)值的求法,以及在閉區(qū)間上的三角函數(shù)的值域問題的求法,意在考查學生整體思想以及轉(zhuǎn)化與化歸思想的應用能力.21、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解題分析】
(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【題目詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省蕪湖市2026屆高三上學期教學質(zhì)量監(jiān)控(一模)地理試卷(含答案)
- 養(yǎng)老院老人健康監(jiān)測人員福利待遇制度
- 企業(yè)員工培訓與考核制度
- 老年綜合評估與醫(yī)養(yǎng)服務匹配
- 吧臺培訓課件
- 我國上市公司研發(fā)投入對企業(yè)價值的深度賦能研究
- 化工熱交換工安全管理水平考核試卷含答案
- 鏈條裝配工安全技能水平考核試卷含答案
- 銷軸鍘銷工標準化競賽考核試卷含答案
- 紫膠熔膠過濾工安全宣傳知識考核試卷含答案
- 云南省2026年普通高中學業(yè)水平選擇性考試調(diào)研測試歷史試題(含答案詳解)
- 廣東省花都亞熱帶型巖溶地區(qū)地基處理與樁基礎施工技術:難題破解與方案優(yōu)化
- 家里辦公制度規(guī)范
- 基于知識圖譜的高校學生崗位智能匹配平臺設計研究
- GB 4053.3-2025固定式金屬梯及平臺安全要求第3部分:工業(yè)防護欄桿及平臺
- 環(huán)氧拋砂防滑坡道施工組織設計
- 2025年下屬輔導技巧課件2025年
- 2026中央廣播電視總臺招聘124人參考筆試題庫及答案解析
- JG/T 3030-1995建筑裝飾用不銹鋼焊接管材
- GA 1016-2012槍支(彈藥)庫室風險等級劃分與安全防范要求
- 學生傷害事故處理辦法及案例分析
評論
0/150
提交評論