版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建省南安市南安一中高一數(shù)學第二學期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線a2x+y+2=0與直線bx-(a2+1)y-1=0互相垂直,則|ab|的最小值為A.5 B.4 C.2 D.12.已知等差數(shù)列中,,則()A. B.C. D.3.矩形中,,若在該矩形內(nèi)隨機投一點,那么使得的面積不大于3的概率是()A. B. C. D.4.在x軸上的截距為2且傾斜角為135°的直線方程為().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-25.在△ABC中,AB=,AC=1,,△ABC的面積為,則()A.30° B.45° C.60° D.75°6.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.7.設(shè)是△所在平面上的一點,若,則的最小值為A. B. C. D.8.函數(shù)y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-19.在中,是邊上一點,,且,則的值為()A. B. C. D.10.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個數(shù)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.下列關(guān)于函數(shù)與的命題中正確的結(jié)論是______.①它們互為反函數(shù);②都是增函數(shù);③都是周期函數(shù);④都是奇函數(shù).12.和的等差中項為__________.13.若甲、乙、丙三人隨機地站成一排,則甲、乙兩人相鄰而站的概率為_________.14.已知球的表面積為4,則該球的體積為________.15.已知圓Ω過點A(5,1),B(5,3),C(﹣1,1),則圓Ω的圓心到直線l:x﹣2y+1=0的距離為_____.16.已知,則與的夾角等于___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列的前n項和為,已知.(Ⅰ)求通項;(Ⅱ)設(shè),求數(shù)列的前n項和.18.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值.19.已知為數(shù)列的前項和,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.已知等差數(shù)列滿足,的前項和為.(1)求及;(2)記,求21.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=(a2+c2﹣b2).(1)求角B的大??;(2)若邊b=,求a+c的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】試題分析:由已知有,∴,∴.考點:1.兩直線垂直的充要條件;2.均值定理的應(yīng)用.2、C【解題分析】
,.故選C.3、C【解題分析】
先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【題目詳解】設(shè)到的距離為,,則,如圖,設(shè),則點在矩形內(nèi),,,∴所求概率為.故選C.【題目點撥】本題考查幾何概型概率.解題關(guān)鍵是確定符合條件點所在區(qū)域及其面積.4、A【解題分析】直線的斜率為tan135°=-1,由點斜式求得直線的方程為y=-x+b,將截據(jù)y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案為A5、C【解題分析】
試題分析:由三角形面積公式得,,所以.顯然三角形為直角三角形,且,所以.考點:解三角形.6、B【解題分析】
根據(jù)正弦定理,可得,進而可求,再利用余弦定理,即可得結(jié)果.【題目詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【題目點撥】本題主要考查余弦定理及正弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).7、C【解題分析】分析:利用向量的加法運算,設(shè)的中點為D,可得,利用數(shù)量積的運算性質(zhì)可將原式化簡為,為AD中點,從而得解.詳解:由,可得.設(shè)的中點為D,即.點P是△ABC所在平面上的任意一點,為AD中點.∴.當且僅當,即點與點重合時,有最小值.故選C.點睛:(1)應(yīng)用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.8、B【解題分析】
根據(jù)余弦函數(shù)有界性確定最值.【題目詳解】因為-1≤cosx≤1,所以【題目點撥】本題考查余弦函數(shù)有界性以及函數(shù)最值,考查基本求解能力,屬基本題.9、D【解題分析】
根據(jù),用基向量表示,然后與題目條件對照,即可求出.【題目詳解】由在中,是邊上一點,,則,即,故選.【題目點撥】本題主要考查了平面向量基本定理的應(yīng)用及向量的線性運算.10、C【解題分析】
根據(jù)線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【題目詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個數(shù)是個,故選C.【題目點撥】本題考查直角三角形個數(shù)的確定,考查相交直線垂直,解題時可以充分利用直線與平面垂直的性質(zhì)得到,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、④【解題分析】
利用反函數(shù),增減性,周期函數(shù),奇偶性判斷即可【題目詳解】①,當時,的反函數(shù)是,故錯誤;②,當時,是增函數(shù),故錯誤;③,不是周期函數(shù),故錯誤;④,與都是奇函數(shù),故正確故答案為④【題目點撥】本題考查正弦函數(shù)及其反函數(shù)的性質(zhì),熟記其基本性質(zhì)是關(guān)鍵,是基礎(chǔ)題12、【解題分析】
設(shè)和的等差中項為,利用等差中項公式可得出的值.【題目詳解】設(shè)和的等差中項為,由等差中項公式可得,故答案為:.【題目點撥】本題考查等差中項的求解,解題時要充分利用等差中項公式來求解,考查計算能力,屬于基礎(chǔ)題.13、【解題分析】記甲、乙兩人相鄰而站為事件A甲、乙、丙三人隨機地站成一排的所有排法有=6,則甲、乙兩人相鄰而站的戰(zhàn)法有=4種站法∴=14、【解題分析】
先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【題目詳解】設(shè)球半徑為,則,解得,所以【題目點撥】本題考查球的面積、體積計算,屬于基礎(chǔ)題.15、【解題分析】
求得線段和線段的垂直平分線,求這兩條垂直平分線的交點即求得圓的圓心,在求的圓心到直線的距離.【題目詳解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中點坐標為(5,2),則AB的垂直平分線方程為y=2;BC的中點坐標為(2,2),,則BC的垂直平分線方程為y﹣2=﹣3(x﹣2),即3x+y﹣8=1.聯(lián)立,得.∴圓Ω的圓心為Ω(2,2),則圓Ω的圓心到直線l:x﹣2y+1=1的距離為d.故答案為:【題目點撥】本小題主要考查根據(jù)圓上點的坐標求圓心坐標,考查點到直線的距離公式,屬于基礎(chǔ)題.16、【解題分析】
利用再結(jié)合已知條件即可求解【題目詳解】由,即,故答案為:【題目點撥】本題考查向量的夾角計算公式,在考題中應(yīng)用廣泛,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解題分析】試題分析:(Ⅰ)當時,根據(jù),構(gòu)造,利用,兩式相減得到,然后驗證,得到數(shù)列的通項公式;(Ⅱ)由上一問可知.根據(jù)零點分和討論去絕對值,利用分組轉(zhuǎn)化求數(shù)列的和.試題解析:(Ⅰ)因為,所以當時,,兩式相減得:當時,,因為,得到,解得,,所以數(shù)列是首項,公比為5的等比數(shù)列,則;(Ⅱ)由題意知,,易知當時,;時,所以當時,,當時,,所以,,……當時,又因為不滿足滿足上式,所以.考點:1.已知求;2.分組轉(zhuǎn)化法求和.【方法點睛】本題考查了數(shù)列求和,一般數(shù)列求和方法(1)分組轉(zhuǎn)化法,一般適用于等差數(shù)列加等比數(shù)列,(2)裂項相消法求和,,等的形式,(3)錯位相減法求和,一般適用于等差數(shù)列乘以等比數(shù)列,(4)倒序相加法求和,一般距首末兩項的和是一個常數(shù),這樣可以正著寫和和倒著寫和,兩式兩式相加除以2得到數(shù)列求和,(5)或是具有某些規(guī)律求和,(6)本題考查了等差數(shù)列絕對值求和,需討論零點后分兩段求和.18、(Ⅰ);(Ⅱ)或.【解題分析】
分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【題目詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.19、(1);(2).【解題分析】
(1)由即可求得通項公式;(2)由(1)中所求的,以及,可得,再用裂項求和求解前項和即可.【題目詳解】(1)當時,整理得,即數(shù)列是以首項為,公比為2的等比數(shù)列,故(2)由(1)得,,故=故數(shù)列的前項和.【題目點撥】本題考查由和之間的關(guān)系求解數(shù)列的通項公式,以及用裂項求和求解前項和,屬數(shù)列綜合基礎(chǔ)題.20、(1),(2)【解題分析】
(1)利用等差數(shù)列的通項公式,結(jié)合,可以得到兩個關(guān)于首項和公差的二元一次方程,解這個方程組即可求出首項和公差,最后利用等差數(shù)列的通項公式和前項和公式求出及;(2)利用裂項相消法可以求出.【題目詳解】解:(1)設(shè)等差數(shù)列的公差為d,(2)由(1)知:【題目點撥】本題考查了等差數(shù)列的通項公式和前項和公式,考查了裂項相消法求數(shù)列前項和,考查了數(shù)學運算能力.21、(1)B=60°(2)【解題分析】
(1)由三角形的面積公式,余弦定理化簡已知等式可求tanB的值,結(jié)合B的范圍可求B的值.(2)由正弦定理,三角函數(shù)恒等變換的應(yīng)用可求a+csin(A),由題意可求范圍A∈(,),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求解.【題目詳解】(1)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐廚垃圾收集工創(chuàng)新意識模擬考核試卷含答案
- 2025年音頻切換臺項目合作計劃書
- 核物探工安全生產(chǎn)基礎(chǔ)知識能力考核試卷含答案
- 學院例會請假條模板
- 2025年數(shù)控板料折彎機項目發(fā)展計劃
- 2025年超高壓電纜連接件項目合作計劃書
- 2025-2030拉脫維亞可再生能源產(chǎn)業(yè)發(fā)展現(xiàn)狀調(diào)研及投資機遇
- 2025年西藏中考物理真題卷含答案解析
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院年度工作總結(jié)
- (2025年)醫(yī)院消毒供應(yīng)中心規(guī)范試題附答案
- 銀行情緒與壓力管理課件
- 甲狀腺危象護理查房要點
- 《無人機飛行安全及法律法規(guī)》第3版全套教學課件
- 2025內(nèi)蒙古電力集團招聘筆試考試筆試歷年參考題庫附帶答案詳解
- 交通警察道路執(zhí)勤執(zhí)法培訓課件
- 十五五學校五年發(fā)展規(guī)劃(2026-2030)
- 洗浴員工協(xié)議書
- GB/T 17642-2025土工合成材料非織造布復(fù)合土工膜
- 清欠歷史舊賬協(xié)議書
- 乙肝疫苗接種培訓
- 心衰患者的用藥與護理
評論
0/150
提交評論